要点:
算法简介:
- 深度学习经典检测方法概述
- 目标检测简介
- 目标检测原理
- 图像金字塔
- 古典目标检测架构
- ROI、IOU、FPS、NMS、mAP
- IOU代码实现
- NMS代码实现
- 特征金字塔
- SPP net
- ROI池化
- YOLO-V1整体思想与网络架构
- YOLO算法整体思路解读
- 检测算法对应结果
- 整体网络架构解读
- 位置损失计算
- 置信度误差与优缺点剖析
- YOLO-V2进化详解
- 版本升级概述
- 网络结构特点
- 网络结构细节解读
- 基于聚类来选择先验框尺寸
- 偏移量计算方法
- 坐标映射与还原
- 感受野作用
- 特征融合改进
- YOLO-V3网络模型介绍
- 版本升级概述
- 多scale方法改进与特征融合
- 经典变换方法对比分析
- 残差连接方法解读
- 整体网络模型结构分析
- 先验框设计优化
- Softmax层优化
- 项目实战-基于YOLO-V3并进行源码解读
- 数据与环境配置
- 训练参数设置
- 数据读取与处理
- Debug模式介绍
- 构建网络模型
- 路由层与shortcut层说明
- YOLO层定义剖析
- 预测结果计算
- 网络偏移计算
- 模型损失函数概述
- 标签样式设计
- 坐标相对位置计算
- 损失函数整合
- 模型训练与总结
- 目标检测效果展示
- 基于YOLO-V3的自定义目标检测
- 标注工具Labelme工具介绍与安装
- 数据标注
- 完成标签制作
- 生成模型所需配置文件
- 数据格式转换
- 数据输入数据预处理
- 训练代码与参数校验
- 训练模型并预测效果
- YOLO-V4网络模型介绍
- 版本升级概述
- 数据增强策略分析
- DropBlock与标签平滑处理
- 损失函数局限性
- CIOU损失函数定义
- NMS细节优化
- SPP与CSP网络结构
- SAM注意力机制模块
- PAN模块解读
- 激活函数与整体框架
- YOLO-V5网络模型介绍
- 版本升级概述
- 数据源Debug流程解读
- 图像数据源配置
- 加载标签数据
- 数据增强方法:Mosaic
- 数据合并
- Getltem构建batch
- 网络框架图可视化介绍
- YOLO5配置文件解读
- Focus模块流程讲解
- 配置文件解析
- 前向传播计算
- BottleneckCSP层计算
- Head层流程解析
- SPP层计算解析
- 上采样与拼接
- 结果输出解析
- 超参数解析
- 命令行参数解析
- 训练流程总结
- 训练策略概述
- 模型迭代过程介绍
- Resnet网络框架结合迁移学习
- 迁移学习目标
- 迁移学习策略
- Resnet原理
- Resnet网络介绍
- Resnet处理操作
- shortcut模块
- 加载训练好的权重
- 模型训练
- 迁移学习结果对比
- 目标检测算法SSD
- SSD概述
- SSD骨干网络
- default box生成与规则
- 损失函数定义
- 网络细节介绍
- 与YOLO对比
- 目标检测算法RetinaNet
- RetinaNet概述
- 类不均衡问题
- 平衡交叉熵
- Focal Loss定义
- 特征金字塔主干网络
- Anchors
- 分类自网络
- 边框回归自网络
- 模型训练
- 模型优化过程
- 模型对比与总结
1 YOLO v1
1) 将一幅图像分成SxS个网格(grid cell),如果某个object的中心 落在这个网格中,则这个网格就负责预测这个object。
2)每个网格要预测B个bounding box,每个bounding box 除了要预测位置之外,还要附带预测一个confidence值。每个网格还要预测C个类别的分数。
网络结构:
损失函数
2 YOLO v2
YOLOv2中的各种尝试:
- pBatch Normalization
- pHigh Resolution Classifier
- pConvolutional With Anchor Boxes
- pDimension Clusters
- pDirect location prediction
- pFine-Grained Features
- pMulti-Scale Training
3 YOLO v3
目标边界框的预测
正负样本的匹配
置信度损失
3.1 YOLOv3 SPP
SPP模块
实现了不同尺度的特征融合实现了不同尺度的特征融合,
注意:这里的SPP和SPPnet中的SPP结构不一样,Spatial Pyramid Pooling
CIoU Loss
解读参考:IoU、GIoU、DIoU、CIoU损失函数的那点事儿
4 YOLOv4
5 YOLOv5
5.1 模型框架
5.2 网络结构
5.2.1 普通CSP结构
5.2.2 C3结构
5.2.3 SPP
5.2.4 SPPF
5.3 训练策略
5.3.1 损失计算
5.4 平衡不同尺度的损失