Pytorch 机器视觉中图形增强(Pytorch 21)

一 机器视觉

深度学习一直是提高计算机视觉系统性能的变革力量。无论是 医疗诊断、自动驾驶,还是智能滤波器、摄像头监控,许多计算机视觉领域的应用都与我们当前和未来的生活密切相关。可以说,最先进的计算机视觉应用与深度学习几乎是不可分割的。

我们研究了计算机视觉中常用的各种卷积神经网络,并将它们应用到简单的图像分类任务中。本章开头,我们将介绍两种可以改进模型泛化的方法,即 图像增广和微调,并将它们应用于图像分类。由于深度神经网络可以有效地表示多个层次的图像,因此这种分层表示已成功用于各种计算机视觉任务,例如 目标检测(object detection)、语义分割(semantic segmentation)和 样式迁移(style transfer)。秉承计算机视觉中利用分层表示的关键思想,我们将从物体检测的主要组件和技术开始,继而展示如何使用完全卷积 网络对图像进行语义分割,然后我们将解释如何使用样式迁移技术来生成像本书封面一样的图像。

1.1 图像增广

图像增广在对训练图像进行一系列的随机变化之后,生成相似但不同的训练样本,从而扩大了训练集的规模。此外,应用图像增广的原因是,随机改变训练样本可以减少模型对某些属性的依赖,从而提高模型的泛化能力。例如,我们可以以不同的方式裁剪图像,使感兴趣的对象出现在不同的位置,减少模型对于对象出现位置的依赖。我们还可以调整亮度、颜色等 因素来降低模型对颜色的敏感度。可以说,图像增广技术对于AlexNet的成功是必不可少的。

%matplotlib inline
import torch
import torchvision
from torch import nn
from d2l import torch as d2l

在对常用图像增广方法的探索时,我们将使用下面这个尺寸为400 × 500的图像作为示例。

d2l.set_figsize()
img = d2l.Image.open('./cat.jpg')
d2l.plt.imshow(img)

大多数图像增广方法都具有一定的随机性。为了便于观察图像增广的效果,我们下面定义辅助函数apply。此函数在输入图像img上多次运行图像增广方法aug并显示所有结果。

def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    d2l.show_images(Y, num_rows, num_cols, scale=scale)

1.1.1 翻转和裁剪 

左右翻转图像通常不会改变对象的类别。这是最早且最广泛使用的图像增广方法之一。接下来,我们使 用transforms模块来创建RandomFlipLeftRight实例,这样就 各有50%的几率使图像向左或向右翻转

apply(img, torchvision.transforms.RandomHorizontalFlip())

1.1.2 上下翻转

上下翻转图像不如左右图像翻转那样常用。但是,至少对于这个示例图像,上下翻转不会妨碍识别。接下来, 我们创建一个RandomFlipTopBottom实例,使图像各有50%的几率向上或向下翻转。

apply(img, torchvision.transforms.RandomVerticalFlip())

1.1.3 随机裁剪

下面的代码将随机裁剪一个面积为原始面积10%到100%的区域,该区域的宽高比从0.5~2之间随机取值。然 后,区域的宽度和高度都被缩放到200像素,a和b之间的随机数指的是在区间[a, b]中 通过均匀采样获得的连续值。

shape_aug = torchvision.transforms.RandomResizedCrop(
    (200, 200), scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)

1.1.4 改变颜色

另一种增广方法是改变颜色。我们可以改变图像颜色的四个方面:亮度、对比度、饱和度和色调。在下面的 示例中,我们随机更改图像的亮度,随机值为原始图像的50%(1 − 0.5)到150%(1 + 0.5)之间。

apply(img, torchvision.transforms.ColorJitter(
    brightness=0.5, contrast=0, saturation=0, hue=0.5))

1.1.5 结合多种图像增广方法

我们将结合多种图像增广方法。比如,我们可以通过使用一个Compose实例来综合上面定义的不同的图像增广方法,并将它们应用到每个图像。

color_aug = torchvision.transforms.ColorJitter(
    brightness=0.5, contrast=0, saturation=0, hue=0.5)

shape_aug = torchvision.transforms.RandomResizedCrop(
    (200, 200), scale=(0.1, 1), ratio=(0.5, 2))

augs = torchvision.transforms.Compose(
    [torchvision.transforms.RandomHorizontalFlip(), color_aug, shape_aug])
apply(img, augs)

1.2 使用图像增广进行训练

让我们使用图像增广来训练模型。这里,我们使用CIFAR‐10数据集,而不是我们之前使用的Fashion‐MNIST数 据集。这是因为Fashion‐MNIST数据集中对象的位置和大小已被规范化,而CIFAR‐10数据集中对象的颜色和 大小差异更明显。CIFAR‐10数据集中的前32个训练图像如下所示。

all_images = torchvision.datasets.CIFAR10(train=True, root='../data',
                                          download=True)
d2l.show_images([all_images[i][0] for i in range(32)], 4, 8, scale=0.8)

为了在预测过程中得到确切的结果,我们通常对训练样本只进行图像增广,且在预测过程中不使用随机操作 的图像增广。在这里,我们只使用最简单的随机左右翻转。此外,我们使用ToTensor实例将一批图像转换为 深度学习框架所要求的格式,即形状为(批量大小,通道数,高度,宽度)的32位浮点数,取值范围为0~1。

train_augs = torchvision.transforms.Compose([
    torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor()])

test_augs = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor()])

 接下来,我们定义一个辅助函数,以便于读取图像和应用图像增广。PyTorch数据集提供的transform参数应 用图像增广来转化图像。

def load_cifar10(is_train, augs, batch_size):
    dataset = torchvision.datasets.CIFAR10(root="../data", train=is_train,
                                           transform=augs, download=True)
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
                    shuffle=is_train, num_workers=d2l.get_dataloader_workers())
    return dataloader

1.2.1 多GPU训练

我们定义一个函数,使用多GPU对模型进行训练和评估。

#@save
def train_batch_ch13(net, X, y, loss, trainer, devices):
    """用多GPU进行小批量训练"""
    if isinstance(X, list):
        # 微调BERT中所需
        X = [x.to(devices[0]) for x in X]
    else:
        X = X.to(devices[0])
        
    y = y.to(devices[0])
    net.train()
    trainer.zero_grad()
    pred = net(X)
    l = loss(pred, y)
    l.sum().backward()
    trainer.step()
    train_loss_sum = l.sum()
    train_acc_sum = d2l.accuracy(pred, y)
    return train_loss_sum, train_acc_sum
#@save
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
               devices=d2l.try_all_gpus()):
    timer, num_batches = d2l.Timer(), len(train_iter)
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],
                            legend=['train loss', 'train acc', 'test acc'])
    net = nn.DataParallel(net, device_ids=devices).to(devices[0])
    for epoch in range(num_epochs):
        metric = d2l.Accumulator(4)
        for i, (features, labels) in enumerate(train_iter):
            timer.start()
            l, acc = train_batch_ch13(
                net, features, labels, loss, trainer, devices)
            metric.add(l, acc, labels.shape[0], labels.numel())
            timer.stop()
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                            (metric[0] / metric[2], metric[1] / metric[3], None))
        test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {metric[0] / metric[2]: .3f}, train acc'
          f'{metric[1] / metric[3]: .3f}, test acc {test_acc: .3f}')
    print(f'{metric[2] * num_epochs / timer.sum(): .1f} examples / sec on {str(devices)}')

我们可以定义train_with_data_aug函数,使用图像增广来训练模型。该函数获取所有的GPU,并 使用Adam作为训练的优化算法,将图像增广应用于训练集,最后调用刚刚定义的用于训练和评估模型 的train_ch13函数。

batch_size, devices, net = 256, d2l.try_all_gpus(), d2l.resnet18(10, 3)

def init_weights(m):
    if type(m) in [nn.Linear, nn.Conv2d]:
        nn.init.xavier_uniform_(m.weight)
        
net.apply(init_weights)

def train_with_data_aug(train_augs, test_augs, net, lr = 0.001):
    train_iter = load_cifar10(True, train_augs, batch_size)
    test_iter = load_cifar10(False, test_augs, batch_size)
    loss = nn.CrossEntropyLoss(reduction='none')
    trainer = torch.optim.Adam(net.parameters(), lr=lr)
    train_ch13(net, train_iter, test_iter, loss, trainer, 10, devices)
train_with_data_aug(train_augs, test_augs, net)

小结:

  • 图像增广基于现有的训练数据生成随机图像,来提高模型的泛化能力
  • 为了在预测过程中得到确切的结果,我们通常对训练样本只进行图像增广,而在预测过程中不使用带 随机操作的图像增广。
  • 深度学习框架提供了许多不同的图像增广方法,这些方法可以被同时应用
  • 10
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值