基础
参考前面的文章
用到的数据表
tidyverse中的diamonds数据集。
# 加载数据库,并了解diamonds数据表
library(tidyverse)
?diamonds
了解一下,diamonds是一个包含近54000颗钻石的价格和其他属性的数据集。
绘制条形图
用到的函数geom_bar()
geom是geometry(几何形状)的缩写,后面加上bar,代表的就是这个函数的功能。
之前的geom_point(散点图)和geom_smooth(拟合曲线)的绘制,都可以通过英语来记忆。
Y轴显示数量
ggplot(data=diamonds)+geom_bar(mapping=aes(x=cut))
结果如下:
条形图展示了按照不同的切割质量进行了统计,y轴为对应的数量,这是geom_bar函数自动计算的。
Y轴显示比例
如果想要把y轴变为比例,则可以用以下代码:
ggplot(data=diamonds)+geom_bar(mapping=aes(x=cut,y=..prop..,group=1))
给条形图着色
就是在aes函数里面加上fill参数
ggplot(data=diamonds)+geom_bar(mapping=aes(x=cut,fill=cut))
如果给着色的是一个新的变量
比如这里对clarity变量进行着色。clarity衡量钻石的净度(I1(最差),SI2, SI1, VS2, VS1, VVS2, VVS1, IF(最好))
代码如下:
ggplot(data=diamonds)+geom_bar(mapping=aes(x=cut,fill=clarity))
比较不同的比例,
就像上图中,如果我们想要看不同clarity在不同cut钻石里的比例。这样就需要把条形图拉到同一水平比较,这个时候可以用到position="fill"这个参数。
ggplot(data=diamonds,mapping=aes(x=cut,fill=clarity))+geom_bar(position="fill")
条形图中的条形图
如果我们想把不同的cut再按照clarity做条形图,这就是条形图中的条形图,可以用到position="dodge"这个参数。
ggplot(data=diamonds,mapping=aes(x=cut,fill=clarity))+geom_bar(position="dodge")