R-CenterNet——用CenterNet对旋转目标进行检测
代码
demo
-
R-DLADCN(推荐)
-
R-ResDCN(主干网用的ResNet而不是DLA)
-
R-DLANet(未编译DCN的主干网)
-
DLADCN(原始CenterNet)
前言
-
前段时间纯粹为了论文凑字数做的一个工作,本文不对CenterNet原理进行详细解读,如果你对CenterNet原理不了解,建议简单读一下原论文然后对照本文代码理解(对原版CenterNet目标检测代码进行了极大程度精简)。
-
基本想法就是直接修改CenterNet的head部分,但是是直接在长宽图上加一层通道表示角度,还是多引出一 路feature-map呢?实测是多引出一张feature map比较好,直接在长宽图上加一层通道很难收敛,具体原因我也是猜测,角度和尺度特征基本无共享特征,且会相互干扰(角度发生些许变化,目标的长宽可能就变了,如果角度是错的,长宽本来是对的呢?反之亦然)引出的feature-map只经历了一层卷积层就开始计算loss,对于这种复杂的关系表征能力不够,可能造成弄巧成拙。网络结构如下:
代码说明
代码主要分为五个部分:
{R-CenterNet}
|-- backbone
-- |-- dlanet.py
-- |-- dlanet_dcn.py
|-- dataset.py
|-- Loss.py
|-- train.py
|-- predict.py
- train.py:模型的训练
- predict.py:模型的前向推理
- backbone:模型的主干网,给了DLA和ResNet的DCN与普通版本,层数可以自定义
- loss.py:模型的损失函数
- dataset.py:模型的数据处理
不是很重要:
{R-CenterNet}
|-- data/airplane
|-- dcn
- data/airplane:示例训练数据与图片
- dcn:编译好的dcn,说明一下,这里与原版CenterNet编译dcn一样,直接文件夹复制过来即可,如果你不会编译dcn,就用backbone内的dlanet.py与resnet.py
-
原版CenterNet代码较多,我只需要做目标检测,所以把各种3D检测等都删了,模型架构也拆了只保留了有用部分,并对代码架构进行了重构,方便自己阅读以及魔改。
-
其次,因为只是加了一个角度检测,所以主要是修改了一下数据处理部分,用的还是VOC格式,只是在.josn文件里面加了一个角度信息,打标签的时候用[0,π]表示,后续在loss内添加了角度的feature-map损失,用的Smooth-L1 loss,打标签方法已在下方。
2020.1021代码更新(不是很重要)
{R-CenterNet}
|-- labelGenerator
|-- evaluation.py
|-- imgs
- labelGenerator:生成自己的训练数据
- evaluation.py:性能指标计算
- imgs:性能指标计算示例图片
-
鉴于一些同学想知道怎么对自己的数据打标签以及生成R-CenterNet可以训练的数据,所以更新一个labelGenerator文件夹,内包含转换函数以及用例。注意,这个文件夹以及其内部函数不是网络必须的,只是想训练自己打标签的数据时用的。
-
鉴于一些同学想知道模型训练完毕,怎么对比性能,比如旋转框怎么计算mIOU等,所以更新一个evaluation.py以及对应的案例图片和文件夹imgs。注意,这个.py和imgs文件夹不是必须的,只是模型训练结束计算性能用的。
训练自己的多分类网络
- 打标签用labelGenerator文件夹里面的代码
- 修改代码中所有num_classes为你的类别数目
- 增加predict.py中方框颜色,我这里只检测单目标,所以只有红蓝框。
- 修改back_bone中hm的数目为你的类别数,如:
def DlaNet(num_layers=34, heads = {'hm': your classes num, 'wh': 2, 'ang':1, 'reg': 2}, head_conv=256, plot=False)
环境
- python3
- 理论上torch >1.0即可,如果报了显存不足的问题就是torch版本低了
- (可选)如何编译DCN以及环境需求, 与CenterNet 原版保持一致,不会编译dcn就用backbone中的非dcn版本,性能相比dcn下降一个点左右,随着数据的增大逐渐缩小。
结束
- 有问题可以github提issue
- 后续有时间会将上面的工作工程化,C++落地