[cvpr2017]Learning an Invariant Hilbert Space for Domain Adaptation

马氏距离

Introduction

  • 本文适用于半监督和无监督形式的domain adaptation
  • 作者尝试开发一个几何解决方案,通过利用黎曼几何的概念学习潜在空间(latent space)的投影和马氏距离。
  • 作者建议从source domain和target domain沿着相关联的映射学习潜在空间(latent space)的结构,以解决无监督和半监督DA的两个问题。
  • 为此,作何提出在latent space中最大化discrimination power(区分source domain和target domain)的概念。同时,这个latent space也要能够做到最小化source domain和target domain的某个统计量之间的差异
  • 特别地,作者利用矩阵流形上的黎曼几何和优化技术来解决问题。流形科普1流形科普2(简而言之就是用非线性方式将数据从高维降到低维的,并且保持拓扑结构不变,对机器学习而言,流形学习就是一个提取特征的过程)

Proposed Method

  • 作者建议学习一个 Invariant Latent Space (ILS)来减少source domain和target domain之间的discrepancy(差异)。
  • 定义:
  • ILS定义了将source domain和target domain的数据映射到p维lantent space空间的变换 Ws Wt
  • latent space用马氏距离 M 作为度量:
  • cost function:
    L=Ld+λLu

    • Ld (Discriminative):source domain和target domain的相异度(dissimilarity)
    • Lu (Unsupervised):衡量source domain和target domain之间差异的一个统计量

Discriminative Loss

  • Ld 是为了使得latent space能够:
    • 最小化latent space中来自同一个分类的样本的不相似度
    • 最大化latent space中来自不同分类的样本的不相似度
  • 定义来自latent space中的样本 Z (这里允许半监督):
  • 度量M要使得相似的pair距离小,不相似的pair距离大

    • β 时, lβ 趋近hinge-loss函数, lβ 科技看成hinge-loss函数的平滑可导的变体,主要是为了便于优化和避免陷入单一样本点
    • 该公式中, xtMx 计算了 z1,k z2,k 的马氏距离(根据原始公式,这个 M 理应是(z1,kz2,k)的协方差矩阵的逆矩阵,但是这里并不是,我在想为什么)
    • pairs中 z1,k z2,k 的循序与 lβ 的大小无关
    • yk=1 时也就是相似的时候, lβ z1,k z2,k 的马氏距离的增加而增加, yk=1 时也就是不相似的时候, lβ z1,k z2,k 的马氏距离而减少
    • 使用Stein divergence(?)将 M 正则化(regularize)

Soft Margin Extension

  • β很大时(接近hinge-loss这种hard margin),会出现大量的异常数据(outliers)。迫使outliers在margin范围内会导致过拟合。因此,作者对 Ld 作出了名为Soft Margin Extension的改进(加入了松弛变量):

Matching Statistical Properties

  • 由于协方差矩阵表现了提取出的特征当中各个维度之间的相关性,因此作者使用协方差矩阵来捕捉source domain和target domain之间的不匹配程度

模型总览

(剩下的内容因为我水平所限,估计要等我学习一段时间(流行学习这一块盲区太多)后再来看才有可能看懂,这里先附上作者源代码

CVPR 2019中发表了一篇题为“迁移学习:无监督领域自适应的对比适应网络(Contrastive Adaptation Network for Unsupervised Domain Adaptation)”的论文。这篇论文主要介绍了一种用于无监督领域自适应的对比适应网络。 迁移学习是指将从一个源领域学到的知识应用到一个目标领域的任务中。在无监督领域自适应中,源领域和目标领域的标签信息是不可用的,因此算法需要通过从源领域到目标领域的无监督样本对齐来实现知识迁移。 该论文提出的对比适应网络(Contrastive Adaptation Network,CAN)的目标是通过优化源领域上的特征表示,使其能够适应目标领域的特征分布。CAN的关键思想是通过对比损失来对源领域和目标领域的特征进行匹配。 具体地说,CAN首先通过一个共享的特征提取器来提取源领域和目标领域的特征表示。然后,通过对比损失函数来测量源领域和目标领域的特征之间的差异。对比损失函数的目标是使源领域和目标领域的特征在特定的度量空间中更加接近。最后,CAN通过最小化对比损失来优化特征提取器,以使源领域的特征能够适应目标领域。 该论文还对CAN进行了实验验证。实验结果表明,与其他无监督领域自适应方法相比,CAN在多个图像分类任务上取得了更好的性能,证明了其有效性和优越性。 综上所述,这篇CVPR 2019论文介绍了一种用于无监督领域自适应的对比适应网络,通过对源领域和目标领域的特征进行对比学习,使得源领域的特征能够适应目标领域。该方法在实验中展现了较好的性能,有望在无监督领域自适应任务中发挥重要作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值