2021-09-17

贝叶斯调参

1.原理

基于目标函数的过去评估结果建立替代函数(概率模型),找到最小化目标函数的值

2.与随机搜索或网格搜索的不同

在尝试下一组超参数时,会参考已有评估结果,省时

3.优化

①目标函数:机器学习模型使用该组超参数在验证集上的损失
②域空间:要搜索的超参数的取值范围
③优化算法:构造替代函数并选择下一个超参数值进行评估的方法
④结果历史纪录:来自目标函数评估的存储结果,包括超参数和验证集上的损失

梯度提升模型(gbm)

基于使用弱学习器(如决策树)组合成强学习器的模型。
通过超参数控制整个集合和单个决策树。(决策树数量、决策树深度)

python实现

自动化机器学习(AutoML)之自动贝叶斯调参

k折交叉验证

1.原理

创建一系列训练集/测试集,计算模型在每个测试集上的准确率,计算平均值

2.步骤

①将原始数据集划分为相等的K部分(“折”)
②将第1部分作为测试集,其余作为训练集
③训练模型,计算模型在测试集上的准确率
④每次用不同的部分作为测试集,重复步骤2和3 K次
⑤将平均准确率作为最终的模型准确率

3.K-fold cross-validation 如何用于参数调优以及选择模型和特征

以 KNN 模型为例,当 KNN 的 K=5 时, 10-fold cross-validation (K-fold cross-validation 的 K 可以选择任意整数,但通常选择10,这是实践中效果最好的值)过程如下:
对于lris数据集进行相关操作有
在这里插入图片描述
在这里插入图片描述
利用 4-fold cross-validation 寻找 KNN 模型中效果最好的 K:

在这里插入图片描述
在这里插入图片描述
准确率最高的KNN的K的范围是[15,20],在 KNN 模型中,通常建议选择使得模型最简单的K值,越高的K会使模型复杂性越低,因此此例中选择 K=20 作为最好的 KNN 模型。

参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值