✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要: 本文针对多输入单输出的回归预测问题,提出了一种基于鲸鱼优化算法(WOA)、双向时间卷积网络(BiTCN)、双向门控循环单元(BiGRU)以及注意力机制(Attention)的组合模型,即WOA-BiTCN-BiGRU-Attention模型。该模型充分利用了各算法的优势,有效地提取了时间序列数据中的复杂特征,并提升了预测精度。本文首先详细介绍了模型的各个组成部分,然后阐述了模型的构建过程以及参数优化策略,最后通过实验验证了该模型的有效性和优越性。结果表明,WOA-BiTCN-BiGRU-Attention模型在多个数据集上的预测精度均优于传统的单一模型以及其他组合模型。
关键词: 回归预测;时间序列;鲸鱼优化算法;双向时间卷积网络;双向门控循环单元;注意力机制;多输入单输出
1. 引言
随着大数据时代的到来,越来越多的领域积累了大量的时序数据,例如金融市场、环境监测、能源预测等。对这些数据的有效分析和预测具有重要的理论意义和实际价值。回归预测作为一种重要的预测方法,其目标是建立一个能够准确预测未来值的数学模型。然而,实际应用中的时序数据往往具有非线性、非平稳以及多变量等复杂特性,传统的回归模型难以有效地捕捉这些特性,导致预测精度较低。
近年来,深度学习技术在时间序列预测领域取得了显著进展。循环神经网络(RNN)及其变体,例如长短期记忆网络(LSTM)和门控循环单元(GRU),因其能够处理序列数据并捕捉长期依赖关系而备受关注。然而,RNN类模型在处理长序列数据时容易出现梯度消失或爆炸问题,影响预测精度。卷积神经网络(CNN)则擅长提取局部特征,但对于捕捉时间序列中的长期依赖关系能力相对较弱。
为了克服上述问题,本文提出了一种新型的WOA-BiTCN-BiGRU-Attention多输入单输出回归预测模型。该模型融合了鲸鱼优化算法(WOA)、双向时间卷积网络(BiTCN)、双向门控循环单元(BiGRU)以及注意力机制(Attention),有效地解决了多输入单输出回归预测问题中存在的挑战。WOA用于优化模型参数,BiTCN提取局部时间特征,BiGRU捕捉长期依赖关系,Attention机制则赋予模型关注关键信息的能力,从而提升预测精度。
2. 模型结构与方法
2.1 鲸鱼优化算法(WOA)
WOA是一种新型的元启发式优化算法,模拟了座头鲸的捕食行为。其具有寻优能力强、收敛速度快的优点,常用于优化神经网络模型的参数。本文利用WOA算法优化WOA-BiTCN-BiGRU-Attention模型中的超参数,例如卷积核大小、隐藏单元个数等,以提高模型的预测精度。
2.2 双向时间卷积网络(BiTCN)
BiTCN结合了CNN和RNN的优势,既能够提取局部时间特征,又能够捕捉一定程度的序列依赖关系。其采用双向结构,能够同时捕捉过去和未来的信息,提高预测精度。本文使用BiTCN提取多输入时间序列数据的局部特征,为后续BiGRU模型提供更丰富的输入信息。
2.3 双向门控循环单元(BiGRU)
BiGRU是GRU的双向扩展,能够同时处理正向和反向的时间序列信息,有效地捕捉长期依赖关系。本文利用BiGRU进一步提取时间序列数据的深层特征,并用于最终的预测。
2.4 注意力机制(Attention)
注意力机制能够赋予模型关注关键信息的能力,提高模型对重要特征的敏感性。本文在BiGRU层之后加入注意力机制,对BiGRU输出的特征进行加权,突出关键信息,从而提高预测精度。
2.5 模型整体架构
WOA-BiTCN-BiGRU-Attention模型的整体架构如下:首先,多输入时间序列数据经过BiTCN层提取局部特征;然后,BiTCN的输出送入BiGRU层,进一步提取深层特征;最后,BiGRU的输出经过Attention层加权,并送入全连接层进行回归预测。WOA算法用于优化整个模型的参数,以获得最佳预测性能。
3. 实验结果与分析
本文选取了三个公开数据集进行实验,分别评估了WOA-BiTCN-BiGRU-Attention模型以及其他对比模型的预测性能。评价指标采用均方根误差(RMSE)和平均绝对误差(MAE)。实验结果表明,WOA-BiTCN-BiGRU-Attention模型在三个数据集上的RMSE和MAE均低于其他对比模型,充分证明了该模型的有效性和优越性。
4. 结论与未来研究方向
本文提出了一种基于WOA-BiTCN-BiGRU-Attention的多输入单输出回归预测模型。该模型通过融合WOA、BiTCN、BiGRU和Attention机制,有效地提取了时间序列数据中的复杂特征,并提升了预测精度。实验结果验证了该模型的有效性和优越性。
未来的研究方向包括:探索更有效的参数优化算法;研究不同注意力机制对模型性能的影响;将该模型应用于更多实际应用场景,例如金融风险预测、电力负荷预测等;进一步研究模型的可解释性,提高模型的透明度。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
博客擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇