✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要: 轴承作为旋转机械的关键部件,其运行状态的准确诊断对于保障设备安全稳定运行至关重要。传统的轴承故障诊断方法依赖于专家经验,效率低且准确性有限。近年来,深度学习技术,特别是卷积神经网络(CNN),在轴承故障诊断领域展现出巨大的潜力。本文提出了一种基于沙猫群优化算法(SCSO)优化的双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。该方法利用BiTCN强大的时间序列特征提取能力,并结合SCSO算法优化BiTCN网络参数,以提高故障诊断的准确率和鲁棒性。实验结果表明,该方法在公共轴承数据集上的诊断准确率显著高于传统的诊断方法和未经优化的BiTCN模型,验证了该方法的有效性。
关键词: 轴承故障诊断;双向时间卷积神经网络(BiTCN);沙猫群优化算法(SCSO);特征提取;深度学习
1. 引言
旋转机械广泛应用于工业生产的各个领域,轴承作为其核心部件,其运行状态直接关系到设备的正常运行和生产效率。轴承故障可能导致设备停机、生产中断甚至造成重大事故,因此及时准确地诊断轴承故障具有重要的经济和安全意义。传统的轴承故障诊断方法主要依赖于振动信号分析、频谱分析等信号处理技术,并结合专家经验进行故障判断。然而,这些方法存在一些不足:首先,依赖于人工特征提取,主观性强,容易造成信息丢失;其次,对专家的经验依赖度高,难以推广应用;最后,在复杂工况下,诊断准确率较低。
近年来,随着深度学习技术的快速发展,基于深度学习的轴承故障诊断方法逐渐成为研究热点。深度学习模型,特别是卷积神经网络(CNN),具有强大的特征学习能力,能够自动从原始数据中提取有效特征,无需人工干预。然而,传统的CNN模型在处理时间序列数据时,往往只考虑单向时间信息,忽略了未来时间信息对当前状态的影响,这限制了其在轴承故障诊断中的性能。
为了解决上述问题,本文提出了一种基于沙猫群优化算法(SCSO)优化的双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。BiTCN能够同时考虑过去和未来时间信息,提取更全面的时间序列特征;SCSO算法则能够有效优化BiTCN网络参数,提高模型的泛化能力和诊断准确率。
2. 双向时间卷积神经网络(BiTCN)
双向时间卷积神经网络(BiTCN)是一种改进的卷积神经网络,它通过同时考虑时间序列数据的前向和后向信息来提取更全面的特征。具体来说,BiTCN由两个独立的卷积层组成:一个正向卷积层和一个反向卷积层。正向卷积层从时间序列的起始点到终点进行卷积,提取过去时间信息;反向卷积层则从时间序列的终点到起始点进行卷积,提取未来时间信息。最后,将正向卷积层和反向卷积层的输出进行融合,得到最终的特征表示。这种双向结构能够捕捉时间序列数据中更丰富的上下文信息,提高模型的表达能力。
3. 沙猫群优化算法(SCSO)
沙猫群优化算法(SCSO)是一种新型的元启发式优化算法,其灵感来源于沙猫的觅食行为。SCSO算法具有收敛速度快、全局搜索能力强等优点,能够有效解决高维、非线性优化问题。在本文中,我们利用SCSO算法优化BiTCN网络的参数,包括卷积核大小、卷积核数量、学习率等,以提高模型的泛化能力和诊断准确率。
4. 基于SCSO优化的BiTCN轴承故障诊断方法
本文提出的基于SCSO优化的BiTCN轴承故障诊断方法主要包括以下步骤:
(1) 数据预处理: 对采集到的轴承振动信号进行预处理,包括去噪、归一化等操作,以提高数据的质量。
(2) 网络结构设计: 设计BiTCN网络结构,包括卷积层、池化层、全连接层等。 根据实际数据特点,调整卷积核大小、卷积核数量等参数。
(3) SCSO算法优化: 利用SCSO算法优化BiTCN网络的参数,以找到最优的网络结构和参数组合。
(4) 模型训练: 使用预处理后的数据训练优化后的BiTCN模型。
(5) 故障诊断: 将待诊断的轴承振动信号输入到训练好的BiTCN模型中,得到故障类型预测结果。
5. 实验结果与分析
为了验证本文提出的方法的有效性,我们在公共轴承数据集上进行了实验。我们将本文提出的方法与传统的故障诊断方法以及未经优化的BiTCN模型进行了比较。实验结果表明,本文提出的方法在诊断准确率和鲁棒性方面都取得了显著的提升。 具体实验数据和图表将在论文中详细展示,并进行深入的分析,包括不同参数设置对结果的影响,以及与其他先进算法的对比。
6. 结论
本文提出了一种基于沙猫群优化算法SCSO优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断的方法。该方法有效地结合了BiTCN强大的时间序列特征提取能力和SCSO算法的全局优化能力,提高了轴承故障诊断的准确率和鲁棒性。实验结果验证了该方法的有效性,为实际工程应用提供了新的思路。未来的研究方向包括探索更有效的深度学习模型和优化算法,以及研究如何处理更多类型的轴承故障数据。 此外,进一步研究如何提高模型的实时性和可解释性也具有重要的意义。
⛳️ 运行结果
🔗 参考文献
[1] 孙艳玲,张家瑞,鲁振中.拉盖尔-高斯涡旋光束在水下湍流中的传输特性[J].光学学报, 2019, 39(10):6.DOI:10.3788/AOS201939.1001005.
[2] Liao Z , Min W , Li C ,et al.Photovoltaic Power Prediction Based on Irradiation Interval Distribution and Transformer-LSTM[J]. 2024.
[3] 赵斯祺,代红,王伟.基于Transformer-LSTM模型的跨站脚本检测方法[J].计算机应用与软件, 2023, 40(9):327-333.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类