【数学建模】呼啦圈动力学和悬浮条件的分析和数值研究附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

智能优化算法   神经网络预测       雷达通信         无线传感器        电力系统

信号处理           图像处理               路径规划         元胞自动机        无人机  

物理应用        机器学习系列       车间调度系列 滤波跟踪系列     数据分析系列 

图像处理系列

🔥 内容介绍

本文旨在深入探讨呼啦圈运动的动力学机理,重点分析呼啦圈在人体腰部持续旋转保持悬浮状态的条件。文章首先回顾了现有的相关文献,概述了呼啦圈运动的基本原理和已有的研究成果。随后,我们建立了一个基于拉格朗日方程的动力学模型,考虑了重力、摩擦力、以及人体对呼啦圈施加的周期性驱动力等因素。通过对模型的解析分析,推导了呼啦圈保持悬浮状态的必要条件,包括驱动力的频率、幅值与人体腰部运动的相互关系。进一步,我们采用数值模拟的方法对模型进行求解,验证了理论分析的正确性,并考察了不同参数对呼啦圈运动状态的影响。最后,我们讨论了该模型的局限性以及未来的研究方向,例如考虑呼啦圈的弹性形变、人体腰部的非理想运动等因素。

关键词: 呼啦圈, 动力学模型, 悬浮条件, 拉格朗日方程, 数值模拟

1. 引言

呼啦圈作为一种简单易行的运动器材,因其具有趣味性和锻炼腰腹部肌肉的效果而深受大众喜爱。然而,呼啦圈能够持续绕腰部旋转而保持悬浮状态的物理机制并非显而易见。理解呼啦圈的动力学原理,不仅能够从科学角度解释这一现象,还能为改进呼啦圈的设计、优化运动方式提供理论依据。

长期以来,科学家和工程师对旋转体动力学进行了深入研究,相关的理论可以应用于解释陀螺、地球自转等现象。然而,呼啦圈运动的特殊之处在于,它涉及人体腰部的周期性驱动力,以及呼啦圈与人体之间的摩擦力。这些因素使得呼啦圈的动力学分析变得更加复杂。

近年来,随着计算能力的提升,以及数值模拟技术的进步,越来越多的研究者开始采用数学建模的方法研究呼啦圈的动力学问题。这些研究主要集中在以下几个方面:

  • 简化模型建立:

     简化呼啦圈的几何形状和运动状态,例如将呼啦圈视为刚性圆环,人体腰部的运动视为理想的周期性运动。

  • 动力学方程推导:

     利用牛顿运动定律或者拉格朗日方程,建立描述呼啦圈运动的动力学方程。

  • 稳定性分析:

     通过分析动力学方程,研究呼啦圈保持悬浮状态的稳定性条件。

  • 数值模拟验证:

     利用数值模拟方法求解动力学方程,验证理论分析的正确性,并研究不同参数对运动状态的影响。

本文旨在在前人研究的基础上,建立一个更为完善的呼啦圈动力学模型,并通过理论分析和数值模拟相结合的方法,深入研究呼啦圈保持悬浮状态的条件。

2. 文献综述

早期的呼啦圈研究主要集中在定性描述呼啦圈运动的原理。例如,可以利用角动量守恒定律来解释呼啦圈能够保持旋转状态的原因。然而,这些定性描述并不能给出呼啦圈保持悬浮状态的精确条件。

近年来,一些研究者开始采用数学建模的方法研究呼啦圈动力学。Denny (2005) 首次提出了一个基于牛顿运动定律的简化模型,研究了呼啦圈在理想条件下的运动状态。该模型将呼啦圈视为刚性圆环,人体腰部的运动视为理想的正弦曲线。通过对模型的分析,Denny 得到了呼啦圈保持悬浮状态的必要条件,即驱动力的频率需要满足一定的范围。

之后,一些研究者对Denny的模型进行了改进。例如,考虑了呼啦圈与人体之间的摩擦力,以及人体腰部的非理想运动。这些改进使得模型更加贴近实际情况,并能更好地解释呼啦圈运动的现象。

此外,一些研究者还采用了拉格朗日方程来建立呼啦圈的动力学模型。拉格朗日方程具有形式简洁、容易处理约束等优点,因此被广泛应用于复杂系统的动力学分析。

总的来说,现有的研究为我们理解呼啦圈的动力学原理奠定了基础。然而,仍然存在一些问题需要进一步研究。例如,如何更准确地描述人体腰部的运动?如何考虑呼啦圈的弹性形变?如何分析呼啦圈运动的稳定性?这些问题将在本文中得到进一步的探讨。

⛳️ 运行结果

🔗 参考文献

%% simulation part% dataalpha=15;phi0 = pi;yes_animate = 0;yesplot = 1;MaxStep = 0.1;maxTime =400;g=980;Rg = 1;Rh = 7.412625;M = 15.64;Rw=0.5;a=Rw;b=Rw;% graphf_list=[];z_list=[];z_ulist=[];f_defined=[];f_udefined=[];');hold onplot(f_udefined,z_ulist,'--');hold onplot(f_list,plot_list,'k');hold on%% experiment partf_test=[9.41,9.52, 8.98,9.09, 8.49,8.57, 8,8.001, 7.521,7.531, 6.95,7.01, 6.52,6.58, 6.01,6.07, 5.561,5.58, 5.01,5.07, 4.57,4.59];z_test=[-0.2,-0.35, -0.3,-0.4, -0.3,-0.45, -0.35,-0.45, -0.4,-0.5, -0.5,-0.7, -0.5,-0.7, -0.6,-0.8, -0.9,-1, -1.1,-1.2, -2,-2.2];for time=1:1:11%     disp(num2str(f_test(2*time)));%     x=[f_test(2*time-1),f_test(2*time)]%     y=[z_test(2*time-1),z_test(2*time)]%     disp(num2str(f_test(2*time-1)));    rectangle('Position',[f_test(2*time-1) z_test(2*time) abs(f_test(2*time)-f_test(2*time-1)) abs(z_test(2*time-1)-z_test(2*time))]);    axis([0 10 -10 0]);endhold onxlabel("f (alpha = 15)");ylabel("stable/unstable point");
🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值