【电力系统】基于多目标粒子群优化算法的冷热电联供型综合能源系统运行优化附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着能源危机和环境污染日益加剧,构建清洁、高效、可持续的能源体系成为全球共识。综合能源系统(Integrated Energy System, IES)作为一种将多种能源形式进行协同规划、集成运行的新型能源供应模式,能够有效提高能源利用效率、降低环境污染,并在推动能源转型中扮演重要角色。冷热电联供(Combined Cooling, Heating and Power, CCHP)作为 IES 的核心组成部分,通过燃料燃烧或可再生能源利用,同时产生电力、热力和冷量,满足用户的多元化能源需求,具有显著的节能减排优势。然而, CCHP 系统的运行优化是一个复杂的多目标优化问题,需要综合考虑经济性、环保性和可靠性等多方面因素,以实现最佳的运行效果。本文将探讨基于多目标粒子群优化算法(Multi-Objective Particle Swarm Optimization, MOPSO)的冷热电联供型综合能源系统运行优化问题,并分析其优势与挑战。

一、冷热电联供型综合能源系统运行优化的意义与挑战

CHP 系统通过回收余热,显著提高了能源利用效率,降低了能源浪费。在 CCHP 系统中,除了电力外,还可以根据用户需求生产冷量和热量,满足用户的多样化能源需求。这种能源供应方式不仅能够降低用户的能源成本,还能减少电网的输电损耗,提高能源系统的整体效率。

然而, CCHP 系统的运行优化也面临着诸多挑战:

  1. 多目标冲突:

     运行优化往往需要在经济性(运行成本最低)、环保性(排放量最低)和可靠性(满足负荷需求)之间进行权衡。这些目标之间通常存在冲突,例如,降低运行成本可能会导致排放量增加,而提高系统可靠性则可能增加运行成本。

  2. 模型复杂性:

     CCHP 系统涉及到多种能源设备的运行,如燃气轮机、燃气锅炉、吸收式制冷机、电制冷机、储能设备等。建立精确的系统模型需要考虑各种设备的运行特性、能量转换效率、以及相互之间的耦合关系,增加了模型的复杂性。

  3. 不确定性因素:

     实际运行中,负荷需求、可再生能源出力、能源价格等因素都存在不确定性。这些不确定性因素会影响系统的优化效果,需要采用鲁棒的优化算法进行处理。

  4. 高维度搜索空间:

     CCHP 系统的运行优化涉及到多个决策变量,如各种设备的出力、储能设备的充放电策略等。这些变量的组合形成了一个高维度的搜索空间,传统的优化算法难以有效地搜索到全局最优解。

二、多目标粒子群优化算法(MOPSO)概述

粒子群优化算法(PSO)是一种基于群体智能的优化算法,模拟鸟群觅食的行为。PSO 通过迭代更新粒子(解)的位置和速度,在搜索空间中寻找最优解。每个粒子都记录着自己的最优位置 (pbest) 和群体中最优位置 (gbest)。在每次迭代中,粒子根据自身的最优位置和群体最优位置来调整自己的速度和位置。

MOPSO 是 PSO 的扩展,用于解决多目标优化问题。与单目标 PSO 不同,MOPSO 维护一个 Pareto 解集,存储当前找到的非支配解。在更新粒子速度和位置时,MOPSO 需要考虑以下几点:

  1. 外部档案维护:

     MOPSO 使用外部档案存储找到的非支配解。每次迭代后,新的解需要与外部档案中的解进行比较,如果新的解支配了外部档案中的某些解,则需要将这些解从外部档案中移除,并将新的解添加到外部档案中。

  2. 领导者选择:

     在选择群体最优位置(gbest)时,MOPSO 需要从外部档案中选择一个解作为领导者。常见的领导者选择方法包括拥挤距离和轮盘赌选择。拥挤距离越大,表示该解周围的解越稀疏,更有可能被选择为领导者。

  3. 变异操作:

     为了增加种群的多样性,防止算法陷入局部最优解,MOPSO 通常采用变异操作。变异操作可以随机改变某些粒子的位置或速度。

三、基于MOPSO的CCHP系统运行优化模型

为了使用 MOPSO 对 CCHP 系统进行运行优化,需要建立相应的数学模型。该模型通常包含以下几个部分:

  1. 目标函数: 目标函数描述了需要优化的目标。在 CCHP 系统运行优化中,通常需要考虑多个目标,例如:

    这些目标可以通过加权求和的方式,或者使用 Pareto 优化的方式进行处理。

    • 经济性目标:

       最小化系统的运行成本,包括燃料成本、维护成本等。

    • 环保性目标:

       最小化系统的排放量,包括 CO2、SO2、NOx 等有害气体的排放量。

    • 可靠性目标:

       保证系统能够满足用户的负荷需求,例如,电力、热力和冷量的需求。

  2. 决策变量: 决策变量是需要优化的变量。在 CCHP 系统运行优化中,常见的决策变量包括:

    • 各种能源设备的出力,如燃气轮机的发电量、燃气锅炉的产热量、吸收式制冷机的制冷量等。

    • 储能设备的充放电功率。

    • 从电网的购电量。

  3. 约束条件: 约束条件描述了系统的物理限制和运行限制。常见的约束条件包括:

    • 各种能源设备的运行限制,如设备的出力范围、爬坡速率等。

    • 能量平衡约束,保证系统的能量供应能够满足用户的负荷需求。

    • 储能设备的容量限制和充放电功率限制。

    • 电网的电压和频率限制。

四、MOPSO算法在CCHP系统运行优化中的应用流程

基于 MOPSO 的 CCHP 系统运行优化流程通常包括以下几个步骤:

  1. 初始化:

     初始化粒子群,包括粒子的位置和速度。粒子的位置代表 CCHP 系统的一个运行方案,粒子的速度代表运行方案的更新方向。

  2. 计算目标函数值:

     对于每个粒子,计算其对应的目标函数值。

  3. 更新外部档案:

     将每个粒子对应的解与外部档案中的解进行比较,更新外部档案。

  4. 选择领导者:

     从外部档案中选择一个解作为领导者。

  5. 更新粒子速度和位置:

     根据领导者的位置和自身的最优位置,更新粒子的速度和位置。

  6. 判断是否满足终止条件:

     如果满足终止条件,如达到最大迭代次数,则算法终止。否则,返回步骤 2。

⛳️ 运行结果

🔗 参考文献

[1] 吴少祥,王维庆,樊小朝,等.考虑经济性和可靠性的综合能源系统优化配置[J].现代电子技术, 2023, 46(20):130-134.DOI:10.16652/j.issn.1004-373x.2023.20.024.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值