【电力系统】考虑多能负荷不确定性的区域综合能源系统鲁棒规划附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

区域综合能源系统 (Regional Integrated Energy System, RIES) 作为一种高效、灵活、清洁的能源供应模式,近年来受到广泛关注。RIES通过能源互联互济,可以实现多种能源的协同优化利用,有效提升能源利用效率,降低环境污染,并增强能源供应的可靠性。然而,RIES 的运行也面临着诸多挑战,其中最关键的挑战之一是负荷需求的不确定性。尤其是在多能互补的 RIES 中,电、热、气等多种能源负荷的需求受到诸多因素影响,呈现出复杂的不确定性特征。因此,如何有效地处理这些不确定性,实现 RIES 的鲁棒规划,是保证系统安全、可靠、经济运行的关键所在。

本文将深入探讨考虑多能负荷不确定性的 RIES 鲁棒规划问题。首先,我们将分析多能负荷不确定性的来源和特征,并探讨常用的不确定性建模方法。其次,我们将介绍鲁棒优化的基本原理和方法,并针对 RIES 的特点,提出一种基于鲁棒优化的 RIES 规划模型。最后,我们将通过案例分析,验证所提出的鲁棒规划模型的有效性,并探讨其在实际应用中的优势和局限性。

一、多能负荷不确定性的来源和特征

RIES 通常涉及多种能源的供应和需求,包括电力、热力、天然气等。这些能源负荷的需求受到多种因素的影响,呈现出复杂的不确定性特征。具体来说,多能负荷的不确定性主要来源于以下几个方面:

  • 用户行为的随机性:

     用户的能源使用习惯具有明显的随机性,例如,居民的用电、用气、用热行为受个人习惯、作息时间、天气变化等多种因素影响,难以精确预测。

  • 外部环境的扰动:

     外部环境的变化,例如气温、湿度、光照强度等,会对建筑物的制冷、供暖、照明等需求产生直接影响,进而影响 RIES 的能源负荷。

  • 设备运行的故障:

     RIES 中的设备,例如发电机、储能设备、热泵等,存在一定的故障概率,设备故障会导致能源供应中断或效率下降,进而影响系统的负荷平衡。

  • 能源价格的波动:

     能源价格的波动会影响用户的能源消费行为,例如,当电价上涨时,用户可能会减少用电量,转而使用其他能源,从而导致电力负荷的下降。

  • 可再生能源的波动性:

     RIES 中通常会接入光伏、风电等可再生能源。这些可再生能源的发电量受天气条件影响,具有间歇性和波动性,导致 RIES 的电力供应具有不确定性。

以上因素共同作用,使得 RIES 的多能负荷呈现出复杂的不确定性特征。这些不确定性不仅影响 RIES 的运行成本,还可能导致系统运行的安全隐患。因此,在 RIES 规划过程中,必须充分考虑这些不确定性,采取有效的措施来应对。

二、不确定性建模方法

为了有效地处理 RIES 中多能负荷的不确定性,需要对其进行合理的建模。常用的不确定性建模方法主要包括以下几种:

  • 概率模型:

     概率模型假设负荷需求服从某种概率分布,例如正态分布、均匀分布、伽马分布等。通过历史数据或专家经验,可以估计这些概率分布的参数,从而描述负荷需求的不确定性。概率模型的优点是能够清晰地描述负荷需求的变化范围和概率分布,但其缺点是需要大量的历史数据,并且假设概率分布已知,这在实际应用中可能难以满足。

  • 模糊集模型:

     模糊集模型使用模糊数来表示负荷需求的不确定性,模糊数是一种区间化的表示方法,能够描述负荷需求可能的变化范围,而无需假设具体的概率分布。模糊集模型的优点是不需要大量的历史数据,适用于数据不足或不确定的情况,但其缺点是计算复杂度较高,并且需要确定隶属函数,这在实际应用中也存在一定的难度。

  • 区间模型:

     区间模型使用区间来表示负荷需求的不确定性,区间的上界和下界分别代表负荷需求可能的最大值和最小值。区间模型的优点是简单易懂,计算复杂度低,但其缺点是过于保守,可能导致规划结果过于谨慎。

  • 场景模型:

     场景模型通过生成多个场景来模拟负荷需求的不确定性,每个场景代表一种可能的负荷需求情况。场景模型能够灵活地描述负荷需求的变化,但其缺点是需要生成大量的场景,这可能导致计算量过大。

在实际应用中,需要根据具体的 RIES 情况和数据可用性,选择合适的不确定性建模方法。可以结合多种建模方法,例如,可以使用概率模型来描述部分负荷需求的不确定性,使用区间模型来描述其他负荷需求的不确定性,从而提高建模的准确性和可靠性。

三、基于鲁棒优化的 RIES 规划模型

鲁棒优化 (Robust Optimization) 是一种用于处理不确定性优化问题的有效方法。其核心思想是在最坏情况下优化系统性能,从而保证系统在各种不确定性情况下都能满足要求。在 RIES 规划中,可以使用鲁棒优化来应对多能负荷的不确定性,保证系统在各种负荷需求情况下都能安全、可靠、经济运行。

基于鲁棒优化的 RIES 规划模型通常包含以下几个关键部分:

  • 目标函数:

     目标函数通常是 RIES 的总成本最小化,包括投资成本、运行成本、维护成本等。

  • 约束条件:

     约束条件包括功率平衡约束、热力平衡约束、天然气平衡约束、设备容量约束、安全约束等。这些约束条件保证 RIES 的运行满足物理规律和安全要求。

  • 不确定性集:

     不确定性集描述了负荷需求可能的变化范围,可以使用区间模型、椭球模型、多面体模型等来表示。

  • 鲁棒约束:

     鲁棒约束保证在不确定性集内的任何负荷需求情况下,所有约束条件都能满足。

求解上述鲁棒优化模型通常需要将其转化为易于求解的等价形式,例如线性规划或混合整数线性规划。常用的转化方法包括对偶理论、切平面法等。

四、案例分析与讨论

为了验证所提出的基于鲁棒优化的 RIES 规划模型的有效性,可以进行案例分析。案例可以选择一个实际的 RIES 项目,例如,一个工业园区或一个住宅小区。

在案例分析中,需要收集 RIES 的相关数据,包括负荷需求数据、设备参数数据、能源价格数据等。根据这些数据,建立 RIES 的数学模型,并选择合适的不确定性建模方法,例如,可以使用区间模型来描述负荷需求的不确定性。

然后,使用鲁棒优化方法求解 RIES 的规划模型,得到 RIES 的最优规划方案。可以将鲁棒规划方案与确定性规划方案进行比较,评估鲁棒规划方案的优势。例如,可以比较两种方案的成本、可靠性、抗风险能力等。

通过案例分析可以发现,基于鲁棒优化的 RIES 规划模型能够有效地应对负荷需求的不确定性,提高 RIES 的可靠性和抗风险能力。但是,鲁棒规划方案的成本通常会高于确定性规划方案,这是因为鲁棒规划方案需要考虑最坏情况,从而牺牲一定的经济性。

五、结论与展望

本文深入探讨了考虑多能负荷不确定性的 RIES 鲁棒规划问题。通过分析多能负荷不确定性的来源和特征,介绍了常用的不确定性建模方法,并提出了一种基于鲁棒优化的 RIES 规划模型。案例分析表明,所提出的鲁棒规划模型能够有效地应对负荷需求的不确定性,提高 RIES 的可靠性和抗风险能力。

尽管基于鲁棒优化的 RIES 规划模型具有诸多优点,但其在实际应用中也存在一些局限性。例如,鲁棒优化模型通常较为保守,可能导致规划结果过于谨慎。此外,鲁棒优化模型的计算复杂度较高,需要进行大量的计算。

未来研究可以从以下几个方面入手,进一步完善 RIES 的鲁棒规划模型:

  • 改进不确定性建模方法:

     可以结合多种不确定性建模方法,例如,可以使用自适应鲁棒优化,根据实际情况动态调整不确定性集的大小,从而提高规划的经济性和可靠性。

  • 开发高效的求解算法:

     可以开发基于分解算法或启发式算法的求解方法,降低鲁棒优化模型的计算复杂度。

  • 考虑更多因素:

     可以将更多因素纳入 RIES 的鲁棒规划模型,例如,考虑可再生能源的波动性、能源价格的波动性、设备运行的故障等,从而提高规划的全面性和准确性。

⛳️ 运行结果

🔗 参考文献

[1] 赵方.微电网中微源的能量管理及分散控制研究[D].燕山大学,2012.

[2] 裘昕月,朱自伟,黄春辉,等.考虑风电出力不确定性的综合能源系统鲁棒优化[J].智慧电力, 2020, 48(5):7.DOI:CNKI:SUN:XBDJ.0.2020-05-002.

[3] 徐夏怡,宫瑶,李玉衡,等.考虑新建工业园区用能不确定性的"源-储"鲁棒优化配置[J].软件, 2020.DOI:10.3969/j.issn.1003-6970.2020.08.019.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值