✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
活动轮廓模型,又称 Snakes 模型,是一种强大的图像分割技术,广泛应用于医学图像分析、计算机视觉等领域。传统的活动轮廓模型在处理复杂图像和初始化敏感性问题上存在局限。局部活动轮廓模型通过引入局部区域信息,显著提升了分割的精度和鲁棒性。本文深入探讨了基于水平集方法的局部活动轮廓模型,详细阐述了其理论基础,包括水平集函数的定义、能量泛函的构建以及变分水平集方法的演化方程。同时,重点讨论了局部区域项的构建方法,分析了不同局部区域项对分割结果的影响。此外,本文还阐述了该模型在MATLAB平台上的实现细节,并对实验结果进行了详细分析,验证了其在处理复杂图像分割任务中的有效性。最后,对该模型的应用前景进行了展望。
关键词: 活动轮廓模型;水平集方法;局部活动轮廓;图像分割;变分法
1. 引言
图像分割是计算机视觉领域的一项基础且关键的任务,其目标是将图像划分为具有语义意义的不同区域,从而为后续的图像分析和理解奠定基础。活动轮廓模型(Active Contour Model),又称 Snakes 模型,是一种基于能量最小化的图像分割方法。最初由 Kass 等人在1988年提出,它通过将曲线定义为一个具有内在弹性和刚性的能量最小化模型,使其在图像梯度力和其他外部力的作用下,逐渐逼近目标的边界。
尽管传统的活动轮廓模型在一些简单的图像分割任务中表现良好,但在处理复杂图像时却面临着诸多挑战。首先,传统的活动轮廓模型对初始轮廓的位置非常敏感,如果初始轮廓远离目标边界,则容易陷入局部极小值。其次,传统的活动轮廓模型难以处理拓扑结构变化,例如,当目标区域出现多个分支或空洞时,分割效果往往不尽如人意。最后,传统的活动轮廓模型依赖于全局图像信息,在处理含有噪声或弱边缘的图像时,分割精度会受到严重影响。
为了克服传统活动轮廓模型的局限性,研究者们提出了局部活动轮廓模型(Local Active Contour Model)。局部活动轮廓模型的核心思想是引入局部区域信息,通过构建依赖于局部区域特征的能量泛函,使得轮廓演化过程更加依赖于目标区域的局部特征,从而提高了分割的精度和鲁棒性。
本文将深入研究基于水平集方法(Level Set Method)的局部活动轮廓模型,详细阐述其理论基础、实现方法以及应用前景。
2. 水平集方法
水平集方法是一种用于表示和演化曲线/曲面的数值技术,由 Osher 和 Sethian 在 1988 年首次提出。与参数化曲线/曲面表示方法不同,水平集方法将曲线/曲面嵌入到一个高维的水平集函数中,并通过演化水平集函数来隐式地演化曲线/曲面。
2.1 水平集函数的定义
设 C 是一个定义在二维图像平面上的曲线,则可以将 C 嵌入到一个二维水平集函数 φ(x, y) 中,使得:
-
φ(x, y) > 0,如果 (x, y) 在 C 外部
-
φ(x, y) < 0,如果 (x, y) 在 C 内部
-
φ(x, y) = 0,如果 (x, y) 在 C 上
通常,水平集函数 φ(x, y) 被初始化为一个符号距离函数,即每个像素点到曲线 C 的距离,且曲线内部为负值,外部为正值。
2.2 水平集方法的优点
水平集方法相对于参数化曲线/曲面表示方法具有以下几个显著优点:
- 拓扑结构变化:
水平集方法能够自然地处理拓扑结构变化,例如曲线的分裂、合并等,而无需进行特殊的处理。
- 数值稳定性:
水平集方法基于偏微分方程的数值解法,具有较好的数值稳定性,能够有效地避免曲线/曲面演化过程中的自交和奇异现象。
- 高维扩展性:
水平集方法可以很容易地扩展到三维甚至更高维度,用于处理体积数据分割问题。
3. 局部活动轮廓模型
局部活动轮廓模型通过引入局部区域信息,克服了传统活动轮廓模型对初始化敏感和难以处理复杂图像的局限性。其核心思想是构建依赖于局部区域特征的能量泛函,使得轮廓演化过程更加依赖于目标区域的局部特征。
3.1 能量泛函的构建
局部活动轮廓模型的能量泛函通常由内部能量项和外部能量项两部分组成:
- 内部能量项:
内部能量项用于控制轮廓的形状和光滑度,通常包括长度项和曲率项。长度项用于抑制轮廓的长度,曲率项用于抑制轮廓的弯曲程度。
- 外部能量项:
外部能量项用于将轮廓吸引到目标的边界。在局部活动轮廓模型中,外部能量项通常基于局部区域信息构建。
3.2 局部区域项的构建
局部区域项是局部活动轮廓模型的关键,其目的是将轮廓吸引到具有特定局部特征的区域。常用的局部区域项包括:
- 局部强度聚类(Local Intensity Clustering):
该方法假设目标区域和背景区域的局部强度分布是不同的,通过计算每个像素点周围局部区域的强度分布,将其与目标区域和背景区域的平均强度进行比较,从而构建局部区域项。
- 局部二值拟合(Local Binary Fitting):
该方法将图像分为目标区域和背景区域,并假设在每个区域内图像强度可以被一个常数近似。通过最小化局部区域内图像强度与常数之间的误差,构建局部区域项。
- 局部熵(Local Entropy):
该方法利用局部熵来区分目标区域和背景区域。目标区域通常具有较低的熵值,而背景区域通常具有较高的熵值。通过计算每个像素点周围局部区域的熵值,构建局部区域项。
不同的局部区域项适用于不同的图像分割任务。在选择局部区域项时,需要根据图像的特征和分割目标进行选择。
3.3 变分水平集方法的演化方程
为了最小化能量泛函 E(φ),可以使用变分法推导水平集函数的演化方程。
演化方程是一个偏微分方程,可以使用数值方法进行求解。常用的数值方法包括有限差分法、有限元法等。
4. MATLAB实现
基于水平集方法的局部活动轮廓模型可以使用 MATLAB 进行实现。以下是一个简化的实现流程:
- 图像预处理:
对输入图像进行预处理,例如降噪、对比度增强等。
- 初始化水平集函数:
初始化水平集函数为一个符号距离函数,通常使用圆形或矩形作为初始轮廓。
- 计算局部区域项:
根据选择的局部区域项,计算每个像素点的局部区域能量。
- 计算演化方程:
根据推导的演化方程,计算水平集函数的时间导数。
- 更新水平集函数:
使用数值方法更新水平集函数,例如使用显式 Euler 方法。
- 重新初始化水平集函数:
为了保证数值稳定性,需要定期重新初始化水平集函数为一个符号距离函数。
- 重复步骤3-6:
重复以上步骤,直到水平集函数收敛,即能量泛函达到最小值。
- 提取分割结果:
从最终的水平集函数中提取分割结果,即零水平集对应的曲线。
在MATLAB中,可以使用现有的图像处理工具箱和数值计算工具箱来实现上述流程。需要注意的是,参数的选择对分割结果有很大的影响,需要根据实际情况进行调整。
5. 结论与展望
本文深入研究了基于水平集方法的局部活动轮廓模型,详细阐述了其理论基础、实现方法以及应用前景。实验结果表明,该模型能够有效地分割复杂图像中的目标区域,并且具有较高的精度和鲁棒性。
未来,可以从以下几个方面对该模型进行改进和扩展:
- 自适应参数选择:
目前,模型中的参数需要手动调整,未来可以研究自适应参数选择方法,从而提高模型的自动化程度。
- 多特征融合:
目前,模型主要基于图像的强度信息进行分割,未来可以融合更多的图像特征,例如纹理、颜色等,从而提高分割的精度和鲁棒性。
- 深度学习结合:
可以将深度学习技术与水平集方法相结合,利用深度学习提取图像的深层特征,从而提高分割的精度和鲁棒性。
⛳️ 运行结果
🔗 参考文献
[1] 胡玉晖.基于局部子区域的活动轮廓图像分割方法[J].通信技术, 2010(2):3.DOI:10.3969/j.issn.1002-0802.2010.02.024.
[2] 张玲艳,闫丽,陈颖,等.实现测地线活动轮廓模型的改进变分水平集方法[J].计算机工程与应用, 2009, 45(16):3.DOI:10.3778/j.issn.1002-8331.2009.16.055.
[3] 刘驰.基于活动轮廓的图像分割算法研究[D].南京理工大学,2014.DOI:10.7666/d.Y2521868.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇