基于CNN-BiLSTM-Attention的共享单车租赁预测研究(数据可换)附Python代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本研究针对共享单车租赁量的准确预测问题,提出了一种基于 CNN-BiLSTM-Attention 的混合神经网络模型。通过对共享单车租赁相关数据进行预处理,包括数据清洗、特征工程等,将处理后的数据输入模型进行训练与预测。实验结果表明,该模型相较于传统预测模型,在共享单车租赁预测方面具有更高的准确性,能够为共享单车运营企业合理调配车辆、优化资源配置提供有效的决策支持。

关键词

共享单车租赁预测;CNN;BiLSTM;Attention 机制;混合神经网络

一、引言

随着共享单车行业的快速发展,共享单车在城市交通中扮演着越来越重要的角色。然而,共享单车的无序投放和资源分配不合理问题逐渐凸显,导致部分区域车辆积压,而另一些区域却供不应求。准确预测共享单车的租赁量,有助于运营企业提前调配车辆,提高资源利用效率,降低运营成本,同时也能更好地满足用户的出行需求。传统的时间序列预测方法,如 ARIMA、灰色预测模型等,在处理具有复杂非线性关系的共享单车租赁数据时,往往难以取得理想的预测效果。近年来,深度学习在时间序列预测领域展现出强大的能力,其中卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制(Attention)在各自擅长的领域都取得了显著成果。因此,本研究将 CNN、BiLSTM 和 Attention 机制相结合,构建混合神经网络模型,用于共享单车租赁预测,旨在提高预测的准确性和可靠性。

二、相关研究

(一)传统共享单车租赁预测方法

传统的共享单车租赁预测方法主要包括统计模型和机器学习模型。统计模型如 ARIMA 模型,通过对时间序列数据的自相关和偏自相关分析,建立模型进行预测。但该模型假设数据具有平稳性,而共享单车租赁数据往往受到多种复杂因素影响,具有较强的非线性和非平稳性,因此预测效果有限。机器学习模型如支持向量机(SVM)、随机森林(RF)等,通过学习数据的特征和模式进行预测,在一定程度上能够处理非线性数据,但这些模型在处理长序列数据时,难以捕捉到数据之间的长期依赖关系,并且在特征提取方面依赖人工设计,存在局限性。

(二)深度学习在共享单车租赁预测中的应用

深度学习模型在处理复杂数据和挖掘数据潜在特征方面具有独特优势,近年来被广泛应用于共享单车租赁预测。循环神经网络(RNN)及其变体 LSTM、GRU 等能够处理时间序列数据中的长期依赖关系,但 RNN 存在梯度消失和梯度爆炸问题,LSTM 和 GRU 虽然在一定程度上缓解了这些问题,但单向的结构使得它们只能利用过去的信息进行预测,无法充分利用未来的信息。CNN 具有强大的特征提取能力,能够自动提取数据的局部特征,但对于时间序列数据的长期依赖关系处理能力较弱。为了克服这些模型的不足,研究人员开始尝试将不同的深度学习模型进行融合,如将 CNN 与 LSTM 结合,利用 CNN 提取数据特征,LSTM 处理时间序列信息,取得了较好的预测效果。同时,注意力机制的引入能够让模型更加关注重要的信息,提高模型的预测精度,在时间序列预测领域也得到了广泛应用。

三、数据预处理

(一)数据获取

本研究选取某城市共享单车的历史租赁数据作为研究对象,数据涵盖了一定时间段内的租赁记录,包括租赁时间、租赁地点、租赁时长、天气状况、节假日等信息。同时,为了丰富数据特征,还收集了该城市同期的交通流量数据、人口密度数据等相关数据。

(二)数据清洗

原始数据中可能存在缺失值、异常值等问题,需要进行数据清洗。对于缺失值,采用均值填充、中位数填充或插值法等方法进行处理。例如,对于天气状况等分类数据的缺失值,根据相邻时间点的天气情况进行填充;对于租赁时长等数值型数据的缺失值,使用均值填充。对于异常值,通过箱线图等方法进行识别,并根据实际情况进行处理,如删除异常值或进行修正。

(三)特征工程

  1. 时间特征提取:从租赁时间中提取年、月、日、小时、星期等时间特征,这些时间特征能够反映出共享单车租赁量在不同时间尺度上的变化规律。例如,工作日和周末、白天和夜晚的租赁量往往存在明显差异。
  1. 编码处理:对于分类变量,如天气状况、节假日等,采用独热编码(One - Hot Encoding)或标签编码(Label Encoding)的方法进行处理,将其转换为数值型数据,以便模型能够处理。
  1. 归一化处理:为了避免数据中不同特征的量纲差异对模型训练造成影响,对数值型特征进行归一化处理,将数据映射到 [0, 1] 或 [-1, 1] 区间内,常用的归一化方法有最小 - 最大归一化(Min - Max Normalization)和 Z - score 归一化。

四、CNN-BiLSTM-Attention 模型构建

(一)CNN 层

CNN 层主要用于提取数据的局部特征。在本模型中,采用多个不同大小卷积核的卷积层对预处理后的数据进行卷积操作。通过卷积操作,能够自动提取数据中不同尺度的局部特征,如在共享单车租赁数据中,能够提取出不同时间段内租赁量的局部变化模式。同时,在卷积层后添加池化层,常用的池化方法有最大池化(Max Pooling)和平均池化(Average Pooling),池化操作可以降低数据的维度,减少计算量,并且能够增强模型的鲁棒性。

(二)BiLSTM 层

BiLSTM 层能够同时处理过去和未来的信息,有效捕捉数据之间的长期依赖关系。将 CNN 层提取的特征输入到 BiLSTM 层中,BiLSTM 层通过遗忘门、输入门和输出门的控制,能够选择性地记忆和遗忘信息,从而更好地处理时间序列数据。在本模型中,设置多个 BiLSTM 层,以进一步提高模型对长期依赖关系的捕捉能力。

(三)Attention 机制

Attention 机制的引入能够让模型更加关注对预测结果重要的信息。在本模型中,将 BiLSTM 层的输出作为 Attention 机制的输入,通过计算不同时间步的注意力权重,为每个时间步分配不同的重要性,使得模型在预测时能够更加关注关键的时间点和特征,从而提高预测的准确性。具体来说,通过计算 Query、Key 和 Value 之间的相似度,得到注意力权重,再根据权重对 Value 进行加权求和,得到最终的输出。

(四)全连接层和输出层

将经过 Attention 机制处理后的输出输入到全连接层中,全连接层将特征进行融合,然后通过输出层输出预测结果。输出层的神经元个数根据预测目标确定,在本研究中,预测目标为共享单车的租赁量,因此输出层为一个神经元,输出预测的租赁量数值。

五、结论与展望

(一)结论

本研究提出了一种基于 CNN-BiLSTM-Attention 的混合神经网络模型用于共享单车租赁预测。通过对共享单车租赁数据进行预处理,构建并训练模型,与其他传统模型和单一深度学习模型进行对比实验,结果表明该模型在预测准确性上具有明显优势,能够为共享单车运营企业提供有效的决策支持。

(二)展望

未来的研究可以进一步探索更多的特征工程方法,挖掘与共享单车租赁量相关的潜在因素,丰富数据特征。同时,可以尝试将其他先进的深度学习模型或技术与本模型相结合,进一步提高模型的性能。此外,还可以对模型进行实时优化和调整,以适应共享单车租赁市场的动态变化。

⛳️ 运行结果

图片

图片

🔗 参考文献

[1] 杨帆,车向红,王勇,等.城市共享单车需求的多特征CNN-BiLSTM预测方法[J].测绘通报, 2023(8):113-119.DOI:10.13474/j.cnki.11-2246.2023.0242.

[2] 邢雪,尹子赫,万乐.结合多变量气象因素的共享单车需求预测方法[J].智能计算机与应用, 2025, 15(1):178-186.

[3] 张徐茜露.早高峰共享单车OD需求预测与停车点智能优化研究[D].江西财经大学,2024.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值