基于CNN-BiLSTM的风电功率预测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球对可再生能源需求的日益增长,风力发电作为一种清洁、高效的能源形式,其重要性愈发凸显。然而,风电的间歇性和波动性对电网的稳定运行构成了挑战。因此,精准的风电功率预测对于优化电网调度、提高电网稳定性具有至关重要的意义。本文深入探讨了基于卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)融合模型的风电功率预测方法。该模型旨在充分挖掘风电时间序列数据中的空间特征和时间依赖性,以期实现更高精度的风电功率预测。研究结果表明,CNN-BiLSTM模型在处理复杂、非线性的风电数据方面展现出显著优势,为风电功率预测提供了一种高效且可靠的解决方案。

关键词:风电功率预测;卷积神经网络(CNN);双向长短期记忆网络(BiLSTM);深度学习;时间序列预测

1. 引言

近年来,全球气候变化和能源危机日益严峻,推动了各国对清洁能源的开发和利用。风力发电作为一种成熟的可再生能源技术,在全球能源结构中的地位日益上升。然而,风速的随机性和不确定性导致风电功率具有间歇性和波动性,这对电力系统的稳定运行和电网调度带来了诸多挑战。例如,风电功率的突然波动可能导致电网频率和电压的异常,甚至引发系统崩溃。因此,准确、可靠的风电功率预测对于保障电网安全、优化电力系统运行、提高风电消纳能力具有举足轻重的意义。

传统的风电功率预测方法主要包括物理方法、统计方法和混合方法。物理方法通常依赖于数值天气预报(NWP)数据,通过建立风力机气动模型进行功率预测。这类方法对NWP数据的精度和模型的准确性要求较高,且计算复杂度较大。统计方法则主要通过对历史风电数据进行统计分析,建立风速与功率之间的映射关系,如时间序列模型(ARIMA)、支持向量机(SVM)和人工神经网络(ANN)等。统计方法在短期预测中表现较好,但对于风电数据的非线性和非平稳性特征,其预测精度仍有提升空间。混合方法则结合了物理方法和统计方法的优点,以期提高预测精度。

近年来,随着人工智能技术的飞速发展,深度学习在处理复杂时间序列数据方面展现出强大能力。卷积神经网络(CNN)在特征提取方面表现出色,能够有效捕捉数据中的局部空间特征;而长短期记忆网络(LSTM)则在处理时间序列的长期依赖关系方面具有独特优势。为了充分利用这两种网络的优势,本文提出了一种基于CNN-BiLSTM的融合模型,用于风电功率预测。该模型旨在通过CNN提取风电数据中的空间特征,再利用BiLSTM捕捉时间序列的双向依赖关系,从而更全面地挖掘风电数据的内在规律,进一步提高预测精度。

2. 相关理论

2.1 卷积神经网络(CNN)

卷积神经网络(CNN)是一种特殊的前馈神经网络,其核心思想是通过卷积层和池化层对输入数据进行特征提取和降维。在图像处理领域,CNN展现出强大的特征学习能力。近年来,CNN也逐渐被应用于时间序列数据的处理中。

  • 卷积层

    :卷积层通过卷积核(滤波器)对输入数据进行滑动操作,提取局部特征。每个卷积核对应一种特征模式,通过卷积操作可以得到不同的特征图。

  • 池化层

    :池化层通常跟在卷积层之后,用于对特征图进行降采样,以减少数据维度,同时保留重要的特征信息,并减少模型过拟合的风险。常见的池化操作包括最大池化和平均池化。

2.2 长短期记忆网络(LSTM)

长短期记忆网络(LSTM)是循环神经网络(RNN)的一种变体,旨在解决传统RNN在处理长序列数据时出现的梯度消失或梯度爆炸问题。LSTM通过引入“门”结构(输入门、遗忘门和输出门)来控制信息的流动,从而有效地捕捉时间序列中的长期依赖关系。

  • 遗忘门

    :决定从细胞状态中丢弃哪些信息。

  • 输入门

    :决定将哪些新信息存储到细胞状态中。

  • 输出门

    :决定基于细胞状态输出哪些信息。

2.3 双向长短期记忆网络(BiLSTM)

双向长短期记忆网络(BiLSTM)是LSTM的扩展,由两个独立的LSTM层组成,一个用于正向序列处理,另一个用于反向序列处理。通过这种双向结构,BiLSTM能够同时利用序列的过去信息和未来信息进行预测,从而更全面地捕捉时间序列的上下文信息。在风电功率预测中,BiLSTM能够更好地捕捉风速、温度等因素对风电功率的滞后和超前影响。

3. 基于CNN-BiLSTM的风电功率预测模型

本文提出的基于CNN-BiLSTM的风电功率预测模型结构如图1所示(此处应插入模型结构图)。该模型主要由以下几个部分组成:

3.1 数据预处理

风电数据通常包含风速、风向、温度、湿度、气压等气象数据以及历史风电功率数据。由于传感器故障、数据传输中断等原因,原始数据可能存在缺失值和异常值。因此,数据预处理是模型训练的关键步骤。

  • 缺失值处理

    :采用插值法(如线性插值、三次样条插值)或均值填充等方法对缺失值进行填充。

  • 异常值处理

    :通过统计分析(如3σ准则)或基于机器学习的方法(如Isolation Forest)识别并处理异常值。

  • 数据归一化

    :为了消除不同特征之间量纲和数值范围的差异,提高模型训练的收敛速度和预测精度,通常采用Min-Max归一化方法将数据缩放到[0, 1]或[-1, 1]之间。

3.2 CNN特征提取层

经过预处理的数据被送入CNN层进行特征提取。CNN层由多个卷积层和池化层组成。卷积层通过不同尺寸的卷积核对输入数据进行滑动操作,从原始数据中提取不同尺度的局部特征。例如,可以通过不同的卷积核捕捉风速变化趋势、温度波动等特征。池化层则对提取到的特征进行降维,减少计算量的同时,增强模型的泛化能力。

3.3 BiLSTM时间序列学习层

CNN提取到的空间特征被展平后作为BiLSTM层的输入。BiLSTM层由两个独立的LSTM网络组成,分别对正向和反向序列进行学习。正向LSTM捕捉风电功率受历史气象因素和历史功率影响的规律,而反向LSTM则捕捉未来气象因素对当前功率的潜在影响。通过BiLSTM,模型能够充分挖掘风电时间序列数据中的双向长期依赖关系,从而更准确地预测风电功率。

3.4 全连接输出层

BiLSTM层的输出经过全连接层,将学习到的高级特征映射到最终的风电功率预测值。全连接层通常使用线性激活函数,以便输出连续的预测值。

3.5 模型训练与评估

  • 损失函数

    :模型训练的目标是最小化预测值与真实值之间的误差。常用的损失函数包括均方误差(MSE)或平均绝对误差(MAE)。

  • 优化器

    :采用Adam、RMSprop等优化器对模型参数进行迭代更新,以最小化损失函数。

  • 评估指标

    :常用的风电功率预测评估指标包括均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)。

4. 结论与展望

本文提出了一种基于CNN-BiLSTM的融合模型用于风电功率预测。该模型充分利用了CNN在空间特征提取方面的优势和BiLSTM在时间序列长期依赖学习方面的优势。实验结果表明,与传统的预测方法和单一深度学习模型相比,CNN-BiLSTM模型在风电功率预测方面展现出更高的精度和更好的鲁棒性,为风电功率的精准预测提供了一种有效的解决方案。

尽管CNN-BiLSTM模型在风电功率预测方面取得了显著进展,但仍存在一些值得深入研究的方向:

  • 多源数据融合

    :考虑将更多的气象数据、环境数据甚至电网运行数据融入模型,以进一步提高预测精度。

  • 迁移学习

    :研究如何利用已训练好的模型在不同风电场之间进行迁移学习,以减少模型训练时间,提高模型的泛化能力。

  • 不确定性量化

    :除了点预测,未来的研究可以探索如何对风电功率预测的不确定性进行量化,为电力系统调度提供更全面的信息。

  • 模型轻量化与部署

    :研究如何对模型进行优化,使其在保证预测精度的前提下,减少计算量和内存占用,以便于在实际电力系统中进行部署和应用。

  • 结合NWP数据

    :尝试将数值天气预报(NWP)数据与深度学习模型结合,以期实现更长时间尺度的风电功率预测。

⛳️ 运行结果

图片

图片

图片

🔗 参考文献

[1] 欧阳卫年,赵紫昱,陈渊睿.自样本特征构造的1DCNN-BiLSTM网侧光伏功率预测[J].电力系统及其自动化学报, 2024, 36(3):151-158.

[2] 杨建,常学军,姚帅,等.基于WT-CNN-BiLSTM模型的日前光伏功率预测[J].南方电网技术, 2024, 18(8):61-69.

[3] 马志侠 张林鍹 巴音塔娜 谢明浩 张盼盼 王馨.基于自适应二次分解与CNN-BiLSTM的超短期风电功率预测[J].太阳能学报, 2024(6).

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值