基于CNN-BILSTM-Attention风电功率预测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

针对风电功率预测中存在的非线性、波动性强等难题,本研究提出基于 CNN-BILSTM-Attention 的风电功率预测模型。通过收集气象数据、风机运行参数等多源数据并进行预处理,将数据输入模型训练。实验结果表明,该模型在预测精度上优于传统方法及单一神经网络模型,能为电力系统合理调度、提高风电消纳能力提供有力支持。

关键词

风电功率预测;CNN;BiLSTM;Attention 机制;混合神经网络

一、引言

随着全球对清洁能源需求的不断增长,风力发电作为一种清洁、可再生能源,在能源结构中所占比重日益增加。然而,由于风速、风向等气象条件的随机性和不确定性,风电功率具有显著的波动性和间歇性,这给电力系统的稳定运行和调度带来了巨大挑战。准确的风电功率预测能够帮助电力系统提前制定发电计划,优化资源配置,提高风电的消纳能力,降低弃风率,因此开展风电功率预测研究具有重要的现实意义。传统的风电功率预测方法,如物理方法、统计方法等,在处理复杂多变的风电数据时存在一定局限性。近年来,深度学习凭借强大的非线性拟合能力,在风电功率预测领域得到广泛应用。CNN 在特征提取方面表现出色,BiLSTM 擅长处理时间序列的长期依赖关系,Attention 机制可增强模型对关键信息的捕捉能力。本研究将三者结合,构建 CNN-BILSTM-Attention 模型,致力于提升风电功率预测的准确性和可靠性。

二、相关研究

(一)传统风电功率预测方法

物理方法基于空气动力学和热力学原理,通过建立风机的物理模型来预测风电功率,该方法需要详细的风机参数和气象数据,计算复杂度高,且对模型的准确性依赖较大。统计方法如时间序列分析、回归分析等,通过对历史数据的分析建立统计模型进行预测,但这类方法难以处理风电数据的非线性和非平稳性,预测精度有限。

(二)深度学习在风电功率预测中的应用

深度学习模型在风电功率预测中展现出良好的性能。RNN 及其变体 LSTM、GRU 等被广泛应用于风电功率预测,它们能够学习时间序列数据的动态变化规律,但单向结构限制了对未来信息的利用。CNN 通过卷积操作可自动提取数据的局部特征,在风电数据特征提取方面具有一定优势,但单独使用难以充分捕捉时间序列的长期依赖关系。为提高预测精度,研究人员尝试将不同深度学习模型融合,如 CNN 与 LSTM 结合,同时引入 Attention 机制,有效提升了模型对风电功率的预测能力。

三、数据预处理

(一)数据收集

本研究收集了某风电场的历史风电功率数据,以及对应的气象数据(包括风速、风向、气温、气压、湿度等)、风机运行参数(如叶片角度、转速等)。这些多源数据包含了影响风电功率的关键因素,为模型训练提供丰富信息。

(二)数据清洗

原始数据中存在缺失值和异常值。对于缺失值,根据数据特点采用不同方法处理。对于风速、风电功率等连续型数据,使用线性插值法进行填充;对于气象状况等离散型数据,参考相邻时间点数据进行填充。对于异常值,通过箱线图识别后,结合实际情况进行修正或删除。

(三)特征工程

  1. 归一化处理:由于不同特征数据的量纲差异较大,采用最小 - 最大归一化方法,将所有数据归一化到 [0, 1] 区间,消除量纲影响,加快模型训练速度。
  1. 时间特征提取:从时间序列数据中提取小时、日、周、月等时间特征,分析风电功率在不同时间尺度下的变化规律,如一天中不同时段、一周中不同日期的风电功率波动特点。

四、CNN-BILSTM-Attention 模型构建

(一)CNN 层

在模型中构建多个不同卷积核大小的卷积层,对归一化后的数据进行卷积操作。较小的卷积核可以捕捉数据的局部细节特征,如短时间内风速的微小变化;较大的卷积核则用于提取更宏观的特征,如一段时间内气象条件的整体变化趋势。卷积层后连接最大池化层,降低数据维度,减少计算量,同时保留重要特征。

(二)BiLSTM 层

将 CNN 层提取的特征输入到 BiLSTM 层。BiLSTM 由前向 LSTM 和后向 LSTM 组成,能够同时从过去和未来两个方向处理数据,充分捕捉风电功率时间序列中的长期依赖关系。通过遗忘门、输入门和输出门的协同作用,BiLSTM 可以选择性地记忆和遗忘信息,适应风电数据的动态变化。

(三)Attention 机制

将 BiLSTM 层的输出作为 Attention 机制的输入。在风电功率预测中,不同时刻的风速、风向等因素对预测结果的影响程度不同。通过 Attention 机制计算每个时间步的注意力权重,使模型更加关注对风电功率预测起关键作用的时间点和特征,如强风来临前后的气象变化和风机运行状态。

(四)全连接层和输出层

经过 Attention 机制处理后的特征输入到全连接层,全连接层将所有特征进行融合。输出层根据预测目标,设置一个神经元,输出预测的风电功率数值。

五、结论与展望

(一)结论

本研究成功构建了基于 CNN-BILSTM-Attention 的风电功率预测模型,通过多源数据预处理和模型训练,在实验中取得了优于传统方法和单一神经网络模型的预测结果,为风电功率预测提供了一种有效的方法。

(二)展望

未来研究可进一步探索更有效的数据融合方法,结合卫星云图、数值天气预报等更多数据源,获取更全面的风电影响因素信息。同时,可以尝试改进 Attention 机制,或者引入其他先进的深度学习技术,进一步提升模型的预测性能和泛化能力。此外,开展模型在实际电力系统中的应用研究,验证其在复杂运行环境下的有效性和实用性。

⛳️ 运行结果

图片

图片

图片

🔗 参考文献

[1] 欧阳卫年,赵紫昱,陈渊睿.自样本特征构造的1DCNN-BiLSTM网侧光伏功率预测[J].电力系统及其自动化学报, 2024, 36(3):151-158.

[2] 杨建,常学军,姚帅,等.基于WT-CNN-BiLSTM模型的日前光伏功率预测[J].南方电网技术, 2024, 18(8):61-69.

[3] 马志侠 张林鍹 巴音塔娜 谢明浩 张盼盼 王馨.基于自适应二次分解与CNN-BiLSTM的超短期风电功率预测[J].太阳能学报, 2024(6).

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值