【图像去噪】加权+绝对差分中值滤波图像去噪(含PNSR)【含 GUI Matlab源码 1880期】

💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。

🍎个人主页:Matlab仿真科研站博客之家

🏆代码获取方式:
💥扫描文章底部QQ二维码💥

⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
在这里插入图片描述

⛄更多Matlab图像处理(仿真科研站版)仿真内容点击👇
Matlab图像处理(仿真科研站版)

⛄一、中值滤波图像去噪简介

图像信号在产生、传输和记录过程中,经常受到各种噪声的干扰,严重地影响图像的视觉效果,因此在进行进一步 的边缘检测、图像分割、特征提取、模式识别等处理之前,采用适当方法尽量减少噪声是一个非常重要的预处理步骤。 目前常使用的噪声滤波器,从整体上可分为线性和非线性滤波两种。在数字信号处理和数字图像处理的早期研究中,线性滤波器是主要处理手段‚它对加性高斯噪声有较好平滑作用。然而当信号中含有非叠加性噪声时‚线性滤波结果很难令人满意。许多实验表明,人类视觉系统是非线性的于是在1958年 Wiener 就提出了非线性滤波理论。特别是1983 年以后,这一领域发展得更加迅速,非线性与统计理论相结合,形成了一个新兴研究领域,在图像处理领域中,目前最常用的图像去噪工具是中值滤波。
1 中值滤波
中值滤波在一维形式下‚是一个奇数个像素的滑动窗 口。经排序后‚窗口序列为 {Fi-v…Fi-1‚Fi‚Fi+1…Fi+v}‚ 其中 V= (L-1) /2‚L 为窗口长度‚Fi 为窗口像素的中值 滤波输出。记作 Med × {·}‚Gi = Med {Fi-v …Fi-1‚Fi‚
Fi+1…Fi+v} 表示取窗口中值。如一窗口长度为5‚像素灰 度分别为 {20‚10‚30‚15‚25}‚Gi=Med {10‚15‚20‚ 25‚30}其灰度级为30的像素为随机脉冲噪声。在经过中 值滤波即被滤除。 一维中值滤波的概念很容易推广到二维。这时取某种形 式的二维窗口‚将窗口内像素排序,生成单调二维中值滤波器,比一维滤波更能抑制噪声。二维中值滤波的窗口形状可以有多种如线状方形、十字形、圆形、菱形等。不同形状的窗口产生不同的滤波效果。使用中要根据图像的内容和 不同的要求加以选择。从经验上看,方形和圆形窗口适宜外 廊线较长的物体图像。十字形窗口则优越于有尖顶物体的图像。因为一维滤波只考虑了图像垂直或水平方向的相关性。 滤波效果不是很明显,所以通常用3×3,5×5的二维中值 滤波。在要求对图像的平滑程度小的情况下,多采用3×3 中值滤波器。 中值滤波能有效抑制脉冲、椒盐噪声。而且一般对图像 边缘也有较好的保护作用。但它对图像中点线等细节模糊作 用也不可忽视:会使宽度小于 (N 为窗口长度) 的边界模糊或消失,随着窗口的增大,滤波作用越大。有效信号损失也 越大。标准中值滤波对所有像素采用统一的处理方法。这种 处理不仅改变了噪声的值,同时也改变了信号点的值‚在滤 波过程中噪声会在邻域内传播。为了克服标准中值滤波存在 的这些问题。最近几年出现了多种基于中值的改进算法‚比 如‚多窗口中值滤波‚加权中值滤波‚自适应中值滤波。
2 自适应加权算法
本文提出一种新的自适应加权方案。充分利用每个窗口元素本身存在的联系,首先对每个窗口元素进行排序‚取适当的坐标比例,进行曲线拟合,拟合后的曲线斜率表征了此 窗口的图像特征。斜率较大的说明窗口中各个元素灰度相差 较大‚可认为具有明显的图像边缘‚进行加权时‚可取排序 后窗口中的几个元素 (如3×3窗口‚取其中3个元素) 进 行加权。这时‚可适当减小中心元素的权重‚而增大两边元 素权重,这样才能保边界和保细节。同理‚斜率较小‚说明 此窗口灰度变化缓慢可直接进行中值滤波,可取一域值以简 化算法复杂性‚提高运算速度。 在加权时‚根据图像各部分特性自适应地选择权重进行加权,这时,方差是个很好的选用标准‚根据图像统计特 性‚按某一函数关系加权到各个元素。且两边元素的权重正 比于方差的大小‚方差大‚两边权重也适当增大。
文章算法如下:
可用可视化软件 matlab 实现
1 对窗口中的元素进行排序;
2 取适当坐标比例进行曲线拟合,并通过matlab函数;
求出拟合线的斜率值
3 当斜率值与其统计平均值差值在指定域值内‚转4‚ 否则转5
4 用窗口的中值代替中心点的值 ;
5 求出该窗口的方差;用关于方差的函数来对窗口序 列中的中间几个元素进行自适应加权。
6 结束本窗口滤波,移至下一窗口。

⛄二、部分源代码

function varargout = MAIN_GUI(varargin)
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @MAIN_GUI_OpeningFcn, …
‘gui_OutputFcn’, @MAIN_GUI_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end

% — Executes just before MAIN_GUI is made visible.
function MAIN_GUI_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;
guidata(hObject, handles);

% — Outputs from this function are returned to the command line.
function varargout = MAIN_GUI_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;

% — Executes during object creation, after setting all properties.
function et_PSNR_1_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,‘BackgroundColor’), get(0,‘defaultUicontrolBackgroundColor’))
set(hObject,‘BackgroundColor’,‘white’);
end

function et_PSNR_2_Callback(hObject, eventdata, handles)

% — Executes during object creation, after setting all properties.
function et_PSNR_2_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,‘BackgroundColor’), get(0,‘defaultUicontrolBackgroundColor’))
set(hObject,‘BackgroundColor’,‘white’);
end

function et_PSNR_3_Callback(hObject, eventdata, handles)

% — Executes during object creation, after setting all properties.
function et_PSNR_3_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,‘BackgroundColor’), get(0,‘defaultUicontrolBackgroundColor’))
set(hObject,‘BackgroundColor’,‘white’);
end

% — Executes on button press in find_imgfile.
function find_imgfile_Callback(hObject, eventdata, handles) %读取图像按钮
[filename,filepath,filterindex] = uigetfile(…
{‘.jpg’,'JPEG-files(.jpg)’;…
.bmp;','BMP-files(.BMP)’;…
.tif;','TIF-files(.tif)’;…
.png;','PNG-files(.png)’;…
.gif;','GIF-files(.gif)’;…
.’,‘All-files(.)’;…
},‘Choose Image File’,‘MultiSelect’,‘on’);
if isequal(filename,0)%未选择
setappdata(0,‘img_name’,[]);
% set(handles.et_imfile,‘string’,‘No Selected File!’);
return;
end
if (isstr(filename))%单个图像
img_name = [filepath,filename];
% set(handles.et_imfile,‘string’,img_name);
set(handles.ax_original,‘visible’,‘on’);%设置显示 原图像
set(handles.txt_original,‘visible’,‘on’);%设置显示 “原图像”标题
I = imread(img_name);
[X,Y,Z]=size(I);
%返回图像各维的大小,如果是灰度图象对应的Z=1
if Z>1
img=rgb2gray(I);%将RGB的图转化为灰度图
else
img=I;
end
axes(handles.ax_original);
imshow(img);
else%多个图像
filename = sort(filename);
set(handles.ax_original,‘visible’,‘off’);
set(handles.txt_original,‘visible’,‘off’);
% set(handles.et_imfile,‘string’,‘Multi Image Files!’);
end

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]金春花,欧阳晶,王国槟.自适应加权中值滤波图像去噪算法[J].九江职业技术学院学报. 2005,(04)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 9
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值