💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:Matlab仿真科研站博客之家
🏆代码获取方式:
💥扫描文章底部QQ二维码💥
⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
⛄更多Matlab路径规划(仿真科研站版)仿真内容点击👇
Matlab路径规划(仿真科研站版)
⛄一、联运运输简介
1 引言
随着全球经济一体化进程的加快, 产业供应链变得越来越复杂, 运输网络变得越来越广泛, 货物运输需求也发生了变化———以顾客需求为中心的方便、快捷、高效、低价的货物运输已成为必然趋势, 单一的集装箱运输模式已经不能满足当今全球供应链管理的发展要求, 因此, 以货物运输为主的集装箱多式联运在全球范围内得到了广泛的认可与使用, 创建高效的集装箱多式联运模式也已成为各国经济可持续发展的关键因素之一。
集装箱多式联运的发展是建立在完善的综合运输体系之上的。然而, 长期以来广西的交通运输已成为其经济发展的瓶颈, 由于基础设施不完善, 没有一个统一的综合运输统筹部门, 各种运输方式没有真正发挥组合优化的作用, 通畅的、安全的、便捷的集装箱多式联运网络尚未建立。
2 遗传算法的原理及优化模型的建立和实现
2.1 遗传算法的原理
遗传算法简称GA (Genetic Algorithm) , 在本质上是一种不依赖具体问题的直接搜索方法。遗传算法的基本思想是基于Darwin进化论和Mendel的遗传学说, Darwin进化论最重要的是适者生存原理:它认为每一物种在发展中会越来越适应环境, 物种每个个体的基本特征由后代所继承, 但后代又会产生一些异于父代的新变化。在环境变化时, 只有那些能适应环境的个体才能保留下来。Mendel遗传学说最重要的是基因遗传原理。它认为遗传以密码方式存在于细胞中, 并以基因形式包含在染色体内。每个基因有特殊的位置并控制某种特殊性质, 所以, 每个基因产生的个体对环境具有某种适应性。基因突变和基因杂交可产生更适应环境的后代。经过存优去劣的自然淘汰, 适应性高的基因结构得以保存下来。
下图是遗传算法的运算过程图:
基于上述思路, 在应用上设计多式联运最优路径求解的步骤。将数据随机置于起始点, 对每条路线按照多个起始点计算其运输费用。
图1 遗传算法的运算过程图
2.2 优化模型的建立和实现
(1) 根据集装箱多式联运运输资源配置的分析可知, 该问题属于非线性约束组合问题, 即使问题规模较小时也难以解决, 随着规模的增大, 解决问题的复杂度也增大。近几年来随着仿真优化方法研究的逐渐完善, Tabu算法越来越多应用到仿真模型优化中, 该算法具有大量随机参数的组合优化问题等特点。
(2) 运用仿真优化方法, 结合仿真模型算法的特点对系统资源配置协调优化问题进行求解, 通过运行仿真模型得到相应的评价指标, 在满足约束条件的基础上, 对仿真方案进行不断的矫正, 最后得出较优的运输方案。
(3) 优化模块。主要通过遗传算法算出问题的最优解, 根据具体的目标, 采用科学算法, 搜索仿真模型的最优解, 并对其进行优化组合。
3 基于遗传算法的集装箱多式联运运输优化实例分析
3.1 问题假设
假设某多式联运经营人准备建立和开发一条由广西柳州 (O) 至广西钦州 (D) 的集装箱多式联运路线, 中途可选择若干个 (n个) 城市作为中间节点, 任意相邻的两个城市之间都有若干种 (g种) 运输方式可供选择, 在相邻的两个城市之间各种运输方式的运输时间、运费、运输能力不同, 当从一种运输方式转换到另一种运输方式时, 需要一定的中转时间和中转费用, 而且在整个运输过程中的总时间不能超过运输期限 (T) , 在考虑上述各种因素的前提下确定最佳的运输路线和组合方式, 使得总运费和总运输时间为最少。
为了对问题进行有效的求解, 参考Spiess和Florian提出的多式联运的优化算法, 本文将每一个城市到另一个城市的每一种运输方式都单独作为一条运输路线加入到运输网络中。即如图2城市1到城市2是连通的, 我们用一条有向箭头表示城市1到城市2之间连通, 但实际城市1到城市2共有三种运输方式可行, 所以将图2进行改进后成为了图3, 两种从城市1到达城市2的运输方式成为了三条可选的运输路线。这样就可以将这个多式联运运输优化问题转化成一个最短路问题。
图2 城市1到城市2的连通图
图3 改进后的连通图
3.2 优化模型的建立
针对最短路问题的特点先对模型作以下假设:
(1) 运量在某两个城市之间不能分割, 即在某两个特定的城市之间, 只能选择一种运输方式;
(2) 运输成本与距离成线性关系。
为了建立模型用有向图G (N, A) 来代表多式联运的运输网络图, 其中N表示结点集合, A表示边集合, N表示G图的结点总个数。C=[Cijk]表示图G的邻接权矩阵———即运输费用矩阵, k={1, 2, 3}代表三种可行的运输方式, 其中T=[tijk]表示第二邻接权矩阵———即运输时间矩阵, 当城市i、j没有任何方式相邻的时候:Cijk=tijk=N (N为一非常大的正整数) 。始点与终点分别以O和D来表示。Ii表示节点i是否被选择到运输路线中。Ii=1代表节点被选取到运输路线中, 0代表没有被选取。Wijk等于I (i) 与I (j) 相与, 即I (i) 与I (j) 是否以第k种运输方式被选入到运输路线中, 当I (i) &I (j) =1时Wijk=1;当I (i) &I (i) =0时, Wijk=N, 即节点i, j之间没有被选择作为运输路线。
最短路问题优化模型表示为:
3.3 优化模型的求解算法
基于上面的问题模型可以看出这个问题是一个NP难题, 很难得到全局最优解或满意解, 如用改进的遗传算法对其进行求解, 能取得较好的效果[i]。在用遗传算法对该模型进行求解时主要要进行下面几项工作。
(1) 确定个体的编码方式:对于遗传算法来说, 它的可行解由个体来表示, 主要在个体之间中进行交叉、变异的操作生成新的个体, 直到得到合乎条件的个体为止。所以如何决定个体的编码方式, 对问题的求解速度、误码率、最优解的范围都有很大影响。拿一个8城市3种运输方式的运输网络来说, 染色体长度就是8x (8+1) =72, 其中城市选取用0-1来代表节点是否被选中, 而运输方式的选取用1-3的自然数编码来表示。
(2) 确定初始群体:若干个染色体或个体组成的一组向量称为一个群体, 遗传算法计算的第一步首先要确定一个初始群体, 在此基础上才可以进行之后的遗传进化过程。初始群体的选择应该具有较为广泛的代表性, 并且要有足够多的染色体 (个体) , 否则有可能陷人局部最优解而出现早熟现象。论文的染色体生产的方式是随机生成大部分染色体, 再在群体中加入一部分可行解染色体, 作为初始群体。
(3) 确定适应度函数:在遗传算法中用适应度函数来表明个体和解的优劣性, 用来确定个体遗传到下一带的概率, 适应度越高的个体遗传到下代的概率就越高, 这样就保证了个体向最优解的方向发展。本文直接用目标函数作为适应度函数, 即f (x) =z (x) 。
(4) 确定交叉和变异规则:交叉是指种群中确定的染色体做为父代, 通过一定规则产生子代染色体的过程, 这一过程所遵循的规则称为交叉规则。这里我们采用两点交叉法, 在这种方法中, 在亲代中选择好两个染色体, 随机产生两个点, 作为交叉点, 然后将两个染色体中两个交叉点之间的对应信息码相交换得到两个子代的染色体。然而, 经过该操作后, 新产生的后代不一定符合约束条件, 所以还要对产生的新个体进行检验, 如果不符合约束条件, 还要重新进行交叉, 直到满足约束条件为止。
⛄二、部分源代码
clear
clc
close all
tic
%% 用importdata这个函数来读取文件
shuju= xlsread(‘shuju.xlsx’, ‘Sheet1’);
bl=0;
cap=100; %车辆最大装载量
%% 提取数据信息
zuobiao=shuju(:,2:3); %所有点的坐标x和y
customer=zuobiao(2:end,:); %顾客坐标
cusnum=size(customer,1); %顾客数
v_num=8; %车辆最多使用数目
demands=shuju(2:end,4); %需求量
a=shuju(2:end,5); %顾客时间窗开始时间[a[i],b[i]]
b=shuju(2:end,6); %顾客时间窗结束时间[a[i],b[i]]
s=shuju(2:end,7); %客户点的服务时间
%% 距离矩阵
h=pdist(zuobiao);
lldist=squareform(h).*1.5; %路路距离矩阵
htdist=squareform(h); %飞机距离矩阵
hydist=squareform(h).*1.2; %%火车距离矩阵
%% 遗传算法参数设置
alpha=100000; %违反的容量约束的惩罚函数系数
belta=0.5;%违反时间窗约束的惩罚函数系数
belta2=0.5;
chesu=[1,5,2];
NIND=300; %种群大小
MAXGEN=500; %迭代次数
Pc=0.9; %交叉概率
Pm=0.05; %变异概率
GGAP=0.9; %代沟(Generation gap)
N=cusnum+v_num-1; %染色体长度=顾客数目+车辆最多使用数目-1
%% 粒子群参数
lx=3;
w=1; %惯性因子
wdamp=0.99; %惯性因子衰减率
c1=1.5; %个体学习因子
c2=2.0; %全局学习因子
XvMin=1; %Xv下限
XvMax=lx; %Xv上限
VvMin=-(lx-1); %Vv下限
VvMax=lx-1; %Vv上限
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
1.申慧芝,经素萍,黄睿伶.基于遗传算法的广西集装箱多式联运运输优化研究[J].科技视界. 2017,(21)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置