【风电功率预测】能量谷算法优化卷积神经网络结合注意力机制的双向长短记忆网络EVO-CNN-BiLSTM-Attention风电功率预测(多输入单输出)【含Maatlab源码 3912期

💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。

🍎个人主页:Matlab仿真科研站博客之家

🏆代码获取方式:
💥扫描文章底部QQ二维码💥

⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
在这里插入图片描述

⛄更多Matlab神经网络预测与分类(仿真科研站版)仿真内容点击👇
Matlab神经网络预测与分类(仿真科研站版)

⛄一、能量谷算法优化卷积神经网络结合注意力机制的双向长短记忆网络EVO-CNN-BiLSTM-Attention风电功率预测

1 能量谷算法
能量谷优化算法(Energy valley optimizer,EVO)是MahdiAzizi等人于2023年提出的一种新颖的元启发式算法,其灵感来自关于稳定性和不同粒子衰变模式的物理原理。
物理反应是指两个粒子或外部亚原子粒子碰撞产生新粒子。在宇宙中,绝大多数粒子被认为是不稳定的,除了那些无限期保持完整的稳定粒子。不稳定的粒子倾向于通过分解或衰变来释放能量,而各种类型的粒子的整体衰变率则有所不同。在衰变过程中,产生能量较低的粒子,而额外的能量通过发射过程产生。能量谷涉及基于其结合能和与其他粒子相互作用的粒子的稳定性。对多种现象的直接观察使专家们提取了一些有价值的模式来定义粒子的衰变。该领域最关键的挑战是通过考虑中子(N)和质子(Z)的数量以及N / Z比率来确定粒子的稳定性界限。N/Z ≈ 1 是指稳定、轻质的颗粒,而对于较重的颗粒,较大的 N/Z 值被视为稳定带。基于粒子的稳定水平,每个粒子倾向于通过移动其N / Z比并向稳定带或能量谷移动来增加其稳定性水平。在这方面,粒子的中子富集水平在这一作用中起着至关重要的作用。位于稳定性界限上方的富中子粒子经历衰变过程,需要如此多的中子来保持稳定。另一方面,贫中子粒子需要太少的中子来实现稳定性,倾向于经历电子捕获或正电子发射以向能谷或稳定带移动。

在衰变过程中,产生能量水平较低的粒子,同时释放出过多的能量。有三种类型的排放决定了具有不同稳定性水平的粒子的衰变过程。α(α)粒子表示与氦相同的致密且带正电的粒子。β(β)粒子是带负电的粒子,其特征是具有较高速度的电子。伽马(γ)射线代表具有较高能量水平的光子。这些类型的发射的整体行为在电场内部进行了说明,考虑到α粒子在很小程度上向负极板弯曲。相比之下,β粒子向正极板弯曲很大,电场不影响γ射线。根据所呈现的发射过程细节,有三种类型的衰变,称为α、β和伽马衰变,源自前面提到的发射类型。在α衰变中,确定α粒子的损失,其中N / Z比率中的N和Z值在每个发射过程中减少。在β衰变中,β粒子的喷射是一个问题,其中通过减少N和增加Z值来增加N / Z比。在伽马衰变中,涉及从激发粒子中省略具有较高能级的γ光子,而这种衰变模式不需要改变N / Z值。

1.1 算法原理
第一步随机初始化:
在这里插入图片描述
在算法的第二步中,确定粒子的富集束缚(EB),用于考虑富中子粒子和贫中子粒子之间的差异。为此,对每个粒子进行目标函数评估并确定为粒子的中子富集水平(NEL)。数学表示如下:
在这里插入图片描述
在第三步中,根据目标函数评估确定颗粒的稳定性水平如下:
在这里插入图片描述
在EVO的主搜索循环中,如果粒子的中子富集水平高于富集界限,则假定粒子具有更大的N / Z比,因此使用α,β或γ方案的衰变过程是透视的。在这方面,在[0,1]范围内生成一个随机数,它模仿宇宙中的稳定性界限(SB)。如果粒子的稳定性水平高于稳定性界限,则认为发生了α和γ衰变,因为对于稳定性水平较高的较重粒子来说,这两种衰变是可能发生的。
基于关于阿尔法衰变的物理原理、发射α射线,提高产物在物理反应中的稳定性水平。这方面可以在数学上表述为 EVO 的位置更新方案之一,其中生成新的候选解决方案。为此,生成两个随机整数作为 [1, d] 范围内的 Alpha Index I,表示发射光线的数量,以及 [1, Alpha Index I] 范围内的 Alpha Index II,它定义了要发射的α射线。发射的光线是候选解中的决策变量,它们被粒子或具有最佳稳定性水平的候选粒子中的射线移除并替换。这些方面在数学上表述如下:
在这里插入图片描述
此外,在伽马衰变中,发射γ射线以提高激发粒子的稳定性水平,因此这方面可以在数学上表述为 EVO 的另一个位置更新过程,其中生成新的候选解决方案。为此,在[1,d]范围内生成两个随机整数作为伽马指数I,表示发射光子的数量,以及[1,伽马指数I]范围内的伽马指数II,它定义了粒子中要考虑的光子。粒子中的光子是候选解中的决策变量,它们被相邻粒子或候选粒子移除并取代,它模仿激发粒子与其他粒子甚至磁场的相互作用。在这方面,所考虑的粒子与其他粒子之间的总距离计算如下,并为此目的使用最近的粒子:
在这里插入图片描述
使用这些操作,在此阶段生成第二个候选解决方案的位置更新过程按如下方式执行:
在这里插入图片描述
如果粒子的稳定性水平低于稳定性界限,则认为会发生β衰变,因为这种类型的衰变发生在稳定性水平较低的更不稳定的粒子中。基于关于β衰变的物理原理,β射线从粒子中排出以提高粒子的稳定性水平,因此由于这些粒子的不稳定性水平较高,因此应该在搜索空间中进行较大的跳跃。在这方面,对粒子进行位置更新过程,其中执行向具有最佳稳定性水平和粒子中心的粒子或候选物的受控运动。该算法的这些方面模拟了粒子到达稳定带的趋势,其中大多数已知粒子位于该带附近,并且其中大多数具有更高水平的稳定性。这些方面在数学上表述如下:
在这里插入图片描述
为了提高算法的开发和探索水平,对采用β衰变的粒子进行了另一个位置更新过程,其中受控地向具有最佳稳定水平的粒子或候选粒子的粒子或候选粒子在粒子的稳定性水平不影响运动过程的情况下执行。这些方面在数学上表述如下:
在这里插入图片描述
如果粒子的中子富集水平低于富集界限(,则假定粒子具有较小的N / Z比,因此粒子倾向于经历电子捕获或正电子发射以向稳定带移动。在这方面,确定搜索空间中的随机移动以考虑这些类型的运动,如下所示:
在这里插入图片描述

2 能量谷算法优化卷积神经网络结合注意力机制的双向长短记忆网络
能量谷算法优化卷积神经网络结合注意力机制的双向长短记忆网络(Energy Valley Algorithm Optimized Convolutional Neural Network with Attention Mechanism in Bidirectional Long Short-Term Memory, EVACNN-LSTM)是一种用于图像处理和语音识别等任务的深度学习模型。

EVACNN-LSTM模型的原理如下:

(1)卷积神经网络(CNN):EVACNN-LSTM首先使用卷积神经网络对输入数据进行特征提取。CNN通过多个卷积层和池化层来捕捉输入数据的局部特征,并通过全连接层将这些特征映射到更高维度的表示。

(2)注意力机制(Attention Mechanism):EVACNN-LSTM引入了注意力机制来增强模型对输入数据的关注度。注意力机制通过计算输入数据中每个位置的重要性权重,使模型能够更加集中地关注对当前任务有用的信息。这样可以提高模型的性能和泛化能力。

(3)双向长短记忆网络(Bidirectional LSTM):EVACNN-LSTM使用双向长短记忆网络来建模输入数据的时序关系。LSTM是一种递归神经网络,它能够有效地处理序列数据,并且具有记忆单元和门控机制,可以捕捉长期依赖关系。双向LSTM结构同时考虑了正向和反向的上下文信息,从而更好地理解输入数据的语义。

(4)能量谷算法优化(Energy Valley Algorithm Optimization):EVACNN-LSTM引入了能量谷算法来优化模型的训练过程。能量谷算法通过寻找能量函数的最小值来优化模型参数,从而提高模型的收敛速度和性能。

⛄二、部分源代码

%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行

%% 导入数据(时间序列的单列数据)
result = xlsread(‘data.xlsx’);

%% 数据分析
num_samples = length(result); % 样本个数
kim = 15; % 延时步长(kim个历史数据作为自变量)
zim = 1; % 跨zim个时间点进行预测

%% 划分数据集
for i = 1: num_samples - kim - zim + 1
res(i, 😃 = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end

%% 数据集分析
outdim = 1; % 输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度

%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)‘;
T_train = res(1: num_train_s, f_ + 1: end)’;
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)‘;
T_test = res(num_train_s + 1: end, f_ + 1: end)’;
N = size(P_test, 2);

%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax(‘apply’, P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax(‘apply’, T_test, ps_output);

%% 数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
p_train = double(reshape(p_train, f_, 1, 1, M));
p_test = double(reshape(p_test , f_, 1, 1, N));
t_train = double(t_train)‘;
t_test = double(t_test )’;

%% 数据格式转换
for i = 1 : M
Lp_train{i, 1} = p_train(:, :, 1, i);
end

for i = 1 : N
Lp_test{i, 1} = p_test( :, :, 1, i);
end

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]张立峰,刘 旭.基于 CNN-GRU 神经网络的短期负荷预测[J].电力科学与工 程. 2020年11月

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值