【风电功率预测】鲸鱼算法优化卷积神经网络结合注意力机制的双向长短记忆网络WOA-CNN-BiLSTM-Attention风电功率预测(多输入单输出)【含Matlab源码 3254期】

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、鲸鱼算法优化卷积神经网络结合注意力机制的长短记忆网络简介

鲸鱼优化算法(WOA),该算法模拟了座头鲸的社会行为,并引入了气泡网狩猎策略。

1.1 灵感
鲸鱼被认为是世界上最大的哺乳动物。一头成年鲸可以长达 30 米,重 180 吨。这种巨型哺乳动物有 7 种不同的主要物种,如虎鲸,小须鲸,鳁鲸,座头鲸,露脊鲸,长须鲸和蓝鲸等。鲸通常被认为是食肉动物,它们从不睡觉,因为它们必须到海洋表面进行呼吸,但事实上,鲸鱼有一半的大脑都处于睡眠状态。
鲸鱼在大脑的某些区域有与人类相似的细胞,这些细胞被称为纺锤形细胞(spindle cells)。这些细胞负责人类的判断、情感和社会行为。换句话说,纺锤形细胞使我们人类有别于其他生物。鲸鱼的这些细胞数量是成年人的两倍,这是它们具有高度智慧和更富情感的主要原因。已经证明,鲸鱼可以像人类一样思考、学习、判断、交流,甚至变得情绪化,但显然,这都只是在一个很低的智能水平上。据观察,鲸鱼(主要是虎鲸)也能发展自己的方言。
另一个有趣的点是关于鲸鱼的社会行为,它们可独居也可群居,但我们观察到的大多数仍然是群居。它们中的一些物种(例如虎鲸)可以在整个生命周期中生活在一个家族中。最大的须鲸之一是座头鲸,一头成年座头鲸几乎和一辆校车一样大。它们最喜欢的猎物是磷虾和小鱼群。图1显示的就是这种哺乳动物。
在这里插入图片描述
图1 座头鲸的气泡网进食行为
关于座头鲸最有趣的事情是它们特殊的捕猎方法了。这种觅食行为被称为气泡网觅食法(bubble-net feeding method)。座头鲸喜欢在接近海面的地方捕食磷虾或小鱼。据观察,这种觅食是通过在圆形或类似数字“9”形路径上制造独特的气泡来完成的,如图 1 所示。在 2011 年之前,这一行为仅仅是基于海面观测的。然而,有研究者利用标签传感器研究了这种行为。他们捕获了9头座头鲸身上300个由标签得到的气泡网进食事件。他们发现了两种与气泡有关的策略,并将它们命名为上升螺旋(upward-spirals)和双螺旋(doubleloops)。在前一种策略中,座头鲸会潜到水下 12 米左右,然后开始在猎物周围制造一个螺旋形的泡泡,并游向水面;后一种策略包括三个不同的阶段:珊瑚循环,用尾叶拍打水面以及捕获循环。这里不展开详细描述。
但是气泡网捕食是只有座头鲸独有的一种特殊行为,而鲸鱼优化算法就是模拟了螺旋气泡网进食策略达到优化的目的。

1.2 数学建模和优化算法
1.2.1 包围捕食(Encircling prey)

座头鲸可以识别猎物的位置并将其包围。由于最优设计在搜索空间中的位置不是先验已知的,WOA 算法假设当前的最佳候选解是目标猎物或接近最优解。在定义了最佳搜索代理之后,其他搜索代理将因此尝试向最佳搜索代理更新它们的位置。这种行为由下列方程表示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
  图 2a 描述了等式(2)针对2D问题的基本原理,搜索代理的位置( X , Y )可以根据当前最优解的位置( X ∗ , Y ∗ )进行更新,通过调整向量 A ⃗ 和C的值,可以找到相对于当前位置下一时刻最优代理附近的不同地方。在 3D 空间中搜索代理可能的更新位置如图 2b。通过定义随机向量 r ,可以到达图 2 中所示关键点之间的搜索空间内任何位置,因此等式(2)允许任何搜索代理在当前最优解的邻域内更新其位置,从而模拟了鲸鱼的包围捕食。相似的概念也可以扩展到 n 维搜索空间。注意图2中的两幅图均是在a=1和C=1情况下的。
在这里插入图片描述
在这里插入图片描述
图2 2D和3D位置向量及其可能的下一个位置
1.2.2 气泡网攻击方式(Bubble-net attacking method)(利用阶段)
共设计了两种方法来对座头鲸的气泡网行为进行建模:
收缩包围机制:通过降低式(3)中 a 的值实现。注意 A的波动范围也通过 a降低,换句话说,A 是一个区间[-a,a]内的随机值,a 随着迭代进行从 2 降为 0。设置 A中的随机值在[-1,1]之间,搜索代理的新位置可以定义为代理原始位置与当前最优代理位置之间的任意位置。图 3a 显示了 2D 空间中当 0 ≤ A ≤ 1 0 时从 ( X , Y )靠近 ( X ∗ , Y ∗ ) 所有可能的位置。这种机制本质上就是包围捕食。
螺旋更新位置。如图 3b,该方法首先计算鲸鱼位置 ( X , Y ) 与猎物位置 ( X ∗ , Y ∗ ) 之间的距离,然后在鲸鱼与猎物位置之间创建一个螺旋等式,来模仿座头鲸的螺旋状移动:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(a)收缩包围机制
在这里插入图片描述
(b)螺旋更新位置
图3 WOA中实现的气泡网搜索机制
值得注意的是,座头鲸在一个不断缩小的圆圈内绕着猎物游动,同时沿着螺旋形路径游动。为了对这种同时发生的行为进行建模,假设有 50%的可能性在收缩包围机制和螺旋模型之间进行选择,以便在优化过程中更新鲸鱼的位置,数学模型如下:
在这里插入图片描述
其中 p pp 为[0,1]之间的随机数。
1.2.3搜索猎物(Search for prey)(exploration phase)
除了泡泡网方法,座头鲸还会随机寻找猎物,同样基于可变 A向量,事实上,座头鲸会根据彼此的位置进行随机搜索,因此使用随机值大于1或小于-1的 A ⃗ 来迫使搜索代理远离参考鲸鱼。与利用阶段相反,这里将根据随机选择的搜索代理来更新搜索代理在探索阶段的位置,而不是根据目前为止最优的搜索代理。该机制和 ∣ A ⃗ ∣ > 1 强调了探索,并允许WOA算法执行全局搜索。数学模型如下:
在这里插入图片描述
在这里插入图片描述
其中 X → r a n d 为从当前种群中选择的随机位置向量(表示一头随机鲸鱼)。
特定解附近满足 A ⃗ > 1的一些可能解如图 4 所示。
在这里插入图片描述
图4 WOA中的探索机制(X*是一个随机选择的搜索代理)
WOA算法首先随机初始化一组解,在每次迭代中,搜索代理根据随机选择的搜索代理或到目前为止获得的最优解更新它们的位置。将 a aa 参数由 2 随迭代次数降为 0,从而由探索逐步到利用。当 ∣ A ⃗ ∣ > 1 时选择随机搜索代理,∣ A ⃗ ∣ < 1 时选择最优解更新搜索代理位置。根据 p pp 的值,WOA可以在螺旋运动和圆环运动之间进行切换。最后,通过满足终止准则来终止WOA算法。WOA算法的伪代码如图5所示。
在这里插入图片描述
图5 WOA算法伪代码
1.3 代码分析
只要明白了原理的基本流程,其实代码就没有说明困难了,咱们主要介绍一下如何实现上述分析的几个重要原理,所要优化的问题的是三十个数的平方和最小(∑ ( x 2 ) \sum(x^2)∑(x 2 ))。
(1)参数初始化。初始时主要设置代理数量和最大迭代次数即可,其他算法相关的参数因为和当前迭代次数相关,需要在迭代中设置。

SearchAgents_no=30; % 搜索代理数量
Max_iteration=500; % 最大迭代次数
``
**2) 种群初始化**。随机初始化所有代理各个维度上的位置值,需要保证在取值范围内。

```c
Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;

(3)种群评估。评估种群中每个代理的目标值,如有某个代理由于当前最优解,则将其设为最优解。

for i=1:size(Positions,1)
    % 计算每个代理的目标值
    fitness=fobj(Positions(i,:));
    % 更新最优解
    if fitness<Leader_score % 如果是最大化问题,这里就是">"
        Leader_score=fitness; 
        Leader_pos=Positions(i,:);
    end
end

(4)设置和迭代次数相关的算法参数。

a=2-t*((2)/Max_iter); % 等式(3)中a随迭代次数从2线性下降至0 
%a2从-1线性下降至-2,计算l时会用到
a2=-1+t*((-1)/Max_iter);

(5)对每个代理的每一维度进行位置更新。
% Update the Position of search agents
for i=1:size(Positions,1)
r1=rand(); % r1为[0,1]之间的随机数
r2=rand(); % r2为[0,1]之间的随机数

A=2*a*r1-a;  % 等式(3)
C=2*r2;      % 等式(4)

b=1;               %  等式(5)中的常数b
l=(a2-1)*rand+1;   %  等式(5)中的随机数l
p = rand();        %  等式(6)中的概率p
for j=1:size(Positions,2)
    if p<0.5   
        if abs(A)>=1
            rand_leader_index = floor(SearchAgents_no*rand()+1);
            X_rand = Positions(rand_leader_index, :);
            D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % 等式(7)
            Positions(i,j)=X_rand(j)-A*D_X_rand;      % 等式(8)

        elseif abs(A)<1
            D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % 等式(1)
            Positions(i,j)=Leader_pos(j)-A*D_Leader;      % 等式(2)
        end
    elseif p>=0.5

        distance2Leader=abs(Leader_pos(j)-Positions(i,j));
        % 等式(5)
        Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);
    end
end

end
2 长短记忆网络原理
长短时记忆网络(LSTM)是一种循环神经网络(RNN)的改进模型,它可以在处理长序列数据时有效地避免梯度消失或梯度爆炸的问题。LSTM通过引入三个门控制器(输入门、遗忘门和输出门)来控制信息的流动,从而实现对长期依赖关系的建模。其中,输入门控制新信息的输入,遗忘门控制旧信息的遗忘,输出门控制输出的信息。LSTM在语音识别、自然语言处理、图像描述等领域中都有广泛的应用。虽然LSTM已经成为当前最流行的RNN模型之一,但在处理更为复杂的问题时,仍然存在一定的不足。因此,研究人员也在不断地提出新的循环神经网络模型来解决不同的问题。

3 长短记忆网络步骤
长短时记忆网络(LSTM)是一种特殊的循环神经网络,能够捕捉长时依赖。下面是LSTM的步骤:
1、预处理输入数据,包括数据归一化和特征提取等。
2、构建LSTM网络,包括输入层、输出层和若干个LSTM层。
3、训练模型,使用训练数据对LSTM网络进行训练,调整网络参数,使得模型能够更好地拟合数据。
4、寻找超参数,包括学习率、迭代次数等,以优化模型的性能。 总之,LSTM网络的步骤包括预处理输入数据、构建网络、训练模型和寻找超参数。

4 鲸鱼算法优化卷积神经网络结合注意力机制的双向长短记忆网络
鲸鱼算法优化卷积神经网络结合注意力机制的双向长短记忆网络是一种用于短期风电功率预测的深度学习模型。该模型结合了鲸鱼算法、卷积神经网络、双向长短记忆网络和注意力机制等多种技术和算法,以提高风电功率预测的准确性和稳定性。具体来说,该模型通过卷积神经网络提取输入数据的特征,再通过双向长短记忆网络捕捉输入数据的长期依赖关系,最后通过注意力机制自动学习输入数据中的重要信息,从而实现对短期风电功率的准确预测。而鲸鱼算法则用于优化模型的参数,以提高模型的性能和收敛速度。

⛄二、部分源代码

%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行

%% 导入数据(时间序列的单列数据)
result = xlsread(‘data.xlsx’);

%% 数据分析
num_samples = length(result); % 样本个数
kim = 15; % 延时步长(kim个历史数据作为自变量)
zim = 1; % 跨zim个时间点进行预测

%% 划分数据集
for i = 1: num_samples - kim - zim + 1
res(i, 😃 = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end

%% 数据集分析
outdim = 1; % 输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度

%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)‘;
T_train = res(1: num_train_s, f_ + 1: end)’;
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)‘;
T_test = res(num_train_s + 1: end, f_ + 1: end)’;
N = size(P_test, 2);

%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax(‘apply’, P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax(‘apply’, T_test, ps_output);

%% 数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
p_train = double(reshape(p_train, f_, 1, 1, M));
p_test = double(reshape(p_test , f_, 1, 1, N));
t_train = double(t_train)‘;
t_test = double(t_test )’;

%% 数据格式转换
for i = 1 : M
Lp_train{i, 1} = p_train(:, :, 1, i);
end

for i = 1 : N
Lp_test{i, 1} = p_test( :, :, 1, i);
end
SearchAgents_no=20;
Max_iteration=30;
numsum=2;
dim=numsum;
ub=[200 0.15];%上限
lb=[10 0.01]; %下限
fboj=@(x)fun(x,f_,Lp_train, t_train,Lp_test,ps_output,M,N ,T_train, T_test);
[Alpha_score,Alpha_pos,Convergence_curve]=WOA(SearchAgents_no,Max_iteration,lb,ub,dim,fboj);
figure
plot(Convergence_curve);
xlabel(‘迭代次数’);
ylabel(‘RMSE’)
[result_WOA,T_sim1_WOA,T_sim2_WOA] = fun(Alpha_pos,f_,Lp_train, t_train,Lp_test,ps_output,M,N ,T_train, T_test);
[result,T_sim1,T_sim2] = fun(lb,f_,Lp_train, t_train,Lp_test,ps_output,M,N ,T_train, T_test);
[mae,mse,rmse,mape,error,errorPercent,R]=calc_error(T_test,T_sim2);
[mae_WOA,mse_WOA,rmse_WOA,mape_WOA,error_WOA,errorPercent_WOA,R_WOA]=calc_error(T_test,T_sim2_WOA);
%% 绘图
figure
plot(1: M, T_train, ‘r-*’, 1: M, T_sim1, ‘b-o’, 1: M, T_sim1_WOA, ‘g-p’, ‘LineWidth’, 1)
legend(‘真实值’, ‘CNN-BiLSTM-Attention预测值’,‘WOA-CNN-BiLSTM-Attention预测值’)
xlabel(‘预测样本’)
ylabel(‘预测结果’)
xlim([1, M])
grid

figure
plot(1: N, T_test, ‘r-*’, 1: N, T_sim2, ‘b-o’, 1: N, T_sim2_WOA, ‘g-p’, ‘LineWidth’, 1)
legend(‘真实值’, ‘CNN-BiLSTM-Attention预测值’,‘WOA-CNN-BiLSTM-Attention预测值’)
xlabel(‘预测样本’)
ylabel(‘预测结果’)
xlim([1, N])
grid

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]仝卫国,郭超宇,赵如意.基于改进麻雀算法优化LSSVM的再循环箱浆液密度预测模型[J].电子测量技术. 2022,45(01)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
WOA-BiLSTM(Whale Optimization Algorithm-Bidirectional Long Short-Term Memory)是一种基于鲸鱼优化算法双向长短记忆神经网络优化方法,用于解决机器学习中的问题。 首先,让我们了解一下双向长短记忆神经网络(BiLSTM)。LSTM是一种特殊的循环神经网络(RNN),它通过引入门控机制来解决传统RNN中的梯度消失和梯度爆炸问题。BiLSTM则是在LSTM的基础上增加了一个反向的LSTM层,可以同时考虑过去和未来的上下文信息。 而WOA(Whale Optimization Algorithm)是一种基于鲸鱼行为的优化算法,模拟了鲸鱼群体中的搜索和迁徙行为。它通过模拟鲸鱼的搜索过程来寻找最优解。 将WOA和BiLSTM结合起来,就得到了WOA-BiLSTM算法。该算法通过使用WOA算法优化BiLSTM网络的参数,以提高其性能和泛化能力。具体而言,WOA-BiLSTM算法使用WOA算法来搜索BiLSTM网络中的权重和偏置,并通过迭代更新来逐步优化网络。 在Python中实现WOA-BiLSTM算法,你可以使用深度学习框架如TensorFlow或PyTorch来构建和训练BiLSTM网络,并结合WOA算法优化网络参数。具体实现步骤如下: 1. 定义BiLSTM网络结构:使用TensorFlow或PyTorch构建一个包双向LSTM层的神经网络模型。 2. 定义损失函数:选择适当的损失函数来度量模型的性能,例如均方误差(MSE)或交叉熵损失。 3. 定义WOA算法:实现WOA算法的搜索和迁徙过程,包括初始化鲸鱼位置、计算适应度函数、更新鲸鱼位置等步骤。 4. 结合WOA和BiLSTM:在每次迭代中,使用WOA算法来搜索并更新BiLSTM网络的权重和偏置。 5. 训练和优化:使用训练数据集对WOA-BiLSTM模型进行训练,并根据验证集的性能来调整模型参数。 6. 测试和评估:使用测试数据集对训练好的WOA-BiLSTM模型进行测试,并评估其性能指标,如准确率、精确率、召回率等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值