【ELM回归预测】卷积神经网络结合极限学习机CNN-ELM数据回归预测【含Matlab源码 3902期】

💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。

🍎个人主页:Matlab仿真科研站博客之家

🏆代码获取方式:
💥扫描文章底部QQ二维码💥

⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
在这里插入图片描述

⛄更多Matlab神经网络预测与分类(仿真科研站版)仿真内容点击👇
Matlab神经网络预测与分类(仿真科研站版)

⛄一、ELM简介

1 ELM的原理
在2004年,极限学习机(extreme learning machine,ELM)理论被南洋理工大学的黄广斌教授提出,ELM是一种单隐含层前馈神经网络(single-hidden layer feedforward neural network,SLFN)算法。它与常用的BP神经网络相比,ELM是对于权重和阈值随机的选取,而不像BP是通过反向传播算法调节各层之间的权值和阈值,从而减少了算法模型的学习时间和结构的复杂性,提高了模型整体的训练速度。

ELM的基本结构如图1所示,其由输入层、隐含层、输出层这3部分组成。原理说明如下,假设输入数据的样本集合为:X=xi|{1≤i≤N},输出数据的样本集合为:Y=yi|{1≤i≤N},其中N为样本总个数、xi为输入样本的第i个训练样本、yi为输出样本的第i个输出样本。这里设置隐含层的神经元个数为J个,则H={hi|1≤i≤J}为隐含层的输出向量的集合,hi为第i个输入样本对应的特征向量。把输入的样本数据在空间上映射到隐含层特征空间上,其二者的关系为
在这里插入图片描述
式中:G为激活函数,主要应用的有Sigmoid、Sin、Hardlim等等;α为输入层各个节点到隐含层各个节点的输入权重矩阵;B为隐含层各个节点的阈值矩阵。
在这里插入图片描述
图1 ELM的结构
若单隐含层的ELM能够实现在误差极小的情况下逼近“输出的N个样本”,则隐含层的输出为
在这里插入图片描述
式中:β为隐含层各个节点到输出层各个节点的输出权重矩阵;H为隐含层输出矩阵。

从以上说明中能看出极限学习机的目的就是让模型的输出与实际的输出之间的差值最小,即求解输出权重矩阵的最小二乘解的问题,只要模型能够输出权重矩阵的最小二乘解就可以完成模型的训练,输出权重矩阵β可由下式表示为
在这里插入图片描述
式中:H+为隐含层输出矩阵H的Moore-Penrose广义矩阵。

由于ELM为单隐含层结构,在面对数据量过大、输入数据的维度过高的输入输出变量时,单隐含层的极限学习机无法捕捉到数据的有效特征。在ELM中的权重和阈值是随机的产生的,这可能会使得部分的神经元成为无效的神经元,减弱算法模型对数据特征的学习能力。在研究中发现,更多的学者对于ELM的衍生算法深度极限学习机(deep extreme learning machine,DELM)产生了浓厚的兴趣,所以本文提出使用DELM对数据分析,弥补了ELM的缺点。为了增强模型的泛化能力,这里选择加入一个正则化项
在这里插入图片描述
式中:C为正则化系数。

本文在构建深度极限学习机中采用ELM自动编码器(ELM autoencoder,ELM-AE)算法得到模型的权值和阈值,ELM-AE的结构如图2所示。自动编码器(auto encoder,AE)是以无监督的学习方式学习数据的特征,它是将输入的向量通过编码器映射到隐含层的特征向量,再由解码器将特征向量重新构造原来的输入向量。构建的ELM-AE使得隐含层节点随机权值和随机阈值正交,如果随机权重和随机阈值不是正交的,它也是能够有一个很好的特征表示作用,从而提高ELM-AE的泛化能力。在ELM-AE产生正交的随机权重和阈值为
在这里插入图片描述
式中:I是单位矩阵。
在这里插入图片描述
图2 ELM-AE结构
在ELM-AE中,输出权重β负责学习从特征空间到输入数据的转换。并且在传统的方法中,是根据最小二乘法求得权重系数,但是在隐含层节点数过多的情况下,这样会导致模型的泛化能力弱和鲁棒性差。所以在求解权重系数中引入正则化系数,提高模型的泛化能力,这里将目标函数设置为
在这里插入图片描述
式中:C为正则化参数。对于稀疏和压缩的ELM-AE表示,把公式中的β求导,并且让目标函数为0,这样求得输出权重β为
在这里插入图片描述
式中:H为ELM-AE的隐含层输出矩阵;X为ELM-AE的输入和输出。

对于输入维度等于编码维度的ELM-AE,ELM-AE的输出权重矩阵β代表着从输入特征空间的数据到隐含层特征空间的转换,则输出权重β的计算公式为
在这里插入图片描述

2 卷积神经网络结合极限学习机CNN-ELM
卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,主要用于图像识别和计算机视觉任务。它通过卷积层、池化层和全连接层等组件来提取图像特征并进行分类。

极限学习机(Extreme Learning Machine,ELM)是一种单层前馈神经网络,它的特点是随机初始化隐藏层的权重和偏置,然后通过解析解的方式直接计算输出层的权重。ELM具有快速训练速度和良好的泛化能力。

将CNN和ELM结合起来,就是CNN-ELM模型。这种结合的目的是利用CNN强大的特征提取能力和ELM快速训练的优势。具体原理如下:
(1)首先,使用CNN对输入图像进行卷积操作,提取图像的局部特征。卷积层通过滑动窗口的方式对图像进行卷积操作,生成一系列的特征图。
(2)接下来,使用池化层对特征图进行下采样,减少特征图的维度。池化操作可以保留主要特征并减少计算量。
(3)然后,将池化后的特征图展开成一维向量,并输入到ELM中。ELM的隐藏层权重和偏置是随机初始化的,然后通过解析解的方式计算输出层的权重。
(4)最后,使用ELM的输出层对输入样本进行分类。ELM的输出层可以是线性回归、二分类或多分类。

⛄二、部分源代码

%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行

%% 导入数据
res = xlsread(‘数据集.xlsx’);

%% 划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)‘;
T_train = res(temp(1: 80), 8)’;
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)‘;
T_test = res(temp(81: end), 8)’;
N = size(P_test, 2);
num_dim = size(res, 2)-1 ; % 特征维度
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax(‘apply’, P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax(‘apply’, T_test, ps_output);
%% 数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
p_train = double(reshape(p_train, num_dim, 1, 1, M));
p_test = double(reshape(p_test , num_dim, 1, 1, N));

%% 构造网络结构
layers = [
imageInputLayer([num_dim, 1, 1], “Name”, “Input”) % 输入层

convolution2dLayer([2, 1], 16, “Name”, “Conv1”) % 卷积核大小为2*1 生成16个卷积
batchNormalizationLayer(“Name”, “BN1”) % 批归一化层
reluLayer(“Name”, “Relu1”) % relu激活层

maxPooling2dLayer([2, 1], ‘Stride’, 1, “Name”, “pool_1”) % 最大池化层 大小为2*1 步长为2

convolution2dLayer([2, 1], 32, “Name”, “Conv2”) % 卷积核大小为2*1 生成32个卷积
batchNormalizationLayer(“Name”, “BN2”) % 批归一化层
reluLayer(“Name”, “Relu2”) % relu激活层

maxPooling2dLayer([2, 1], ‘Stride’, 1, “Name”, “pool_2”) % 最大池化层,大小为2*2,步长为2

fullyConnectedLayer(1) % 全连接层
regressionLayer]; % 分类层

%% 参数设置
options = trainingOptions(‘adam’, … % Adam 梯度下降算法
‘MaxEpochs’, 100,… % 最大训练次数 500
‘MiniBatchSize’, 10,…
‘InitialLearnRate’, 1e-3,… % 初始学习率为0.001
‘L2Regularization’, 1e-04,… % L2正则化参数
‘LearnRateSchedule’, ‘piecewise’,… % 学习率下降
‘LearnRateDropFactor’, 0.1,… % 学习率下降因子 0.1
‘LearnRateDropPeriod’, 100,… % 经过450次训练后 学习率为 0.001*0.1
‘Shuffle’, ‘every-epoch’,… % 每次训练打乱数据集
‘ValidationPatience’, Inf,… % 关闭验证
‘Plots’, ‘training-progress’,… % 画出曲线
‘Verbose’, false);

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]周莉,刘东,郑晓亮.基于PSO-DELM的手机上网流量预测方法[J].计算机工程与设计. 2021,42(02)
[2]张宇,王晓东,李晓光. (2017). 基于卷积神经网络和极限学习机的图像分类方法. 计算机应用与软件, 34(11), 1-6.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
【【预测模型-elm预测】基于海鸥算法优化极限学习机预测matlab代码.zip】是一个可用于预测的Matlab代码压缩文件。其中使用了极限学习机(Extreme Learning Machine,ELM)作为预测模型,并通过海鸥算法(Seagull Algorithm)对其进行优化。 ELM是一种训练速度快、预测精度高的机器学习算法,它通过随机初始化输入层到隐藏层的权重和偏置,然后利用正则化方法求解输出层的权重,从而使得神经网络的训练变得非常高效。ELM在处理大数据集时具有较好的性能,因为它可以通过增加隐藏层的神经元数量来提高训练速度和预测精度。 海鸥算法是一种基于自适应寻优策略的优化算法,它模拟了海鸥觅食的过程,通过觅食行为的学习来对ELM模型的参数进行调整。通过海鸥算法的优化,可以进一步提高ELM模型的预测能力和效果。 这个Matlab代码压缩文件中,包了使用ELM模型和海鸥算法优化的预测模型的实现代码。使用者可以根据需要进行参数的调整和优化,并根据自己的数据进行训练和预测。该代码文件可以帮助用户更好地理解ELM和海鸥算法的实现方式,并在自己的预测任务中应用这些算法。 总之,【【预测模型-elm预测】基于海鸥算法优化极限学习机预测matlab代码.zip】是一个使用ELM模型和海鸥算法优化的预测模型的Matlab代码压缩文件,可以帮助用户更好地进行预测任务的实现和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值