【SVM回归预测】鲸鱼算法优化卷积神经网络结合支持向量机WOA-CNN-SVM数据回归预测【含Matlab源码 3775期】

💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。

🍎个人主页:Matlab仿真科研站博客之家

🏆代码获取方式:
💥扫描文章底部QQ二维码💥

⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
在这里插入图片描述

⛄更多Matlab神经网络预测与分类(仿真科研站版)仿真内容点击👇
Matlab神经网络预测与分类(仿真科研站版)

⛄一、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄二、鲸鱼算法简介

本文提出了一种基于鲸鱼算法优化卷积神经网络结合支持向量机(WOA-CNN-SVM)的数据回归预测模型。该模型将鲸鱼算法应用于卷积神经网络(CNN)的参数优化,并利用支持向量机(SVM)进行回归预测。实验结果表明,该模型在多个数据集上取得了良好的回归预测性能。

1 引言
数据回归预测是机器学习领域的一项重要任务,其目标是根据给定的输入数据预测输出数据。近年来,随着深度学习技术的快速发展,基于深度学习的数据回归预测模型取得了显著的成果。其中,卷积神经网络(CNN)因其强大的特征提取能力而在图像分类、目标检测等任务中取得了广泛的应用。然而,传统的CNN模型往往存在参数多、易过拟合等问题。

为了解决上述问题,本文提出了一种基于鲸鱼算法优化卷积神经网络结合支持向量机(WOA-CNN-SVM)的数据回归预测模型。该模型将鲸鱼算法应用于CNN的参数优化,并利用SVM进行回归预测。鲸鱼算法是一种受鲸鱼觅食行为启发的优化算法,具有较强的全局搜索能力和局部搜索能力。SVM是一种二分类算法,但也可以通过适当的修改用于回归预测任务。

2 WOA-CNN-SVM模型
WOA-CNN-SVM模型的结构如图1所示。该模型主要包括三个部分:鲸鱼算法优化CNN、CNN特征提取和SVM回归预测。

2.1 鲸鱼算法优化CNN
鲸鱼算法是一种受鲸鱼觅食行为启发的优化算法。鲸鱼在觅食时会采用一种称为“螺旋捕食”的策略,即以螺旋形的方式在水中游动,同时不断地调整自己的位置和方向,以捕获猎物。鲸鱼算法模拟了鲸鱼的这种觅食行为,将鲸鱼的位置和方向视为优化问题的解,并通过不断地调整鲸鱼的位置和方向来搜索最优解。

在WOA-CNN-SVM模型中,鲸鱼算法被用来优化CNN的参数。具体来说,鲸鱼算法首先随机初始化一组鲸鱼种群,然后通过不断地更新鲸鱼的位置和方向来搜索最优解。在每次迭代中,鲸鱼算法都会根据鲸鱼的当前位置和方向计算出鲸鱼的适应度,并根据适应度值更新鲸鱼的位置和方向。鲸鱼算法的更新公式如下:

2.2 CNN特征提取
CNN是一种深度学习模型,具有强大的特征提取能力。在WOA-CNN-SVM模型中,CNN被用来提取输入数据的特征。具体来说,CNN首先对输入数据进行卷积操作,然后通过池化操作降低特征图的维度,最后通过全连接层输出特征向量。

2.3 SVM回归预测
SVM是一种二分类算法,但也可以通过适当的修改用于回归预测任务。在WOA-CNN-SVM模型中,SVM被用来对CNN提取的特征向量进行回归预测。具体来说,SVM首先将特征向量映射到一个高维空间,然后在高维空间中寻找一个最优超平面,使得超平面将正负样本分开,并且超平面与正负样本的距离最大。

⛄三、部分源代码

%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread(‘数据集.xlsx’);

%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), 😃; % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度

%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)‘;
T_train = res(1: num_train_s, f_ + 1: end)’;
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)‘;
T_test = res(num_train_s + 1: end, f_ + 1: end)’;
N = size(P_test, 2);

%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax(‘apply’, P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax(‘apply’, T_test, ps_output);

%% 数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
p_train = double(reshape(p_train, f_, 1, 1, M));
p_test = double(reshape(p_test , f_, 1, 1, N));
t_train = double(t_train)‘;
t_test = double(t_test )’;

SearchAgents_no = 6; % 数量
Max_iteration = 10; % 最大迭代次数
dim = 3; % 优化参数个数
lb = [1e-3,32 ,1e-5]; % 参数取值下界(学习率,批量处理,正则化系数)
ub = [5e-2, 128,1e-2]; % 参数取值上界(学习率,批量处理,正则化系数)

fitness = @(x)fical(x);

[Best_score,Best_pos,curve]=WOA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness);
% Best_pos=[0.001 100 0.5];
Best_pos(1, 2) = round(Best_pos(1, 2));
best_hd = Best_pos(1, 2); % 批量处理
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数

%% 构造网络结构
layers = [
imageInputLayer([f_, 1, 1], “Name”, “Input”) % 输入层 输入数据规模[f_, 1, 1]

convolution2dLayer([3, 1], 16, “Name”, “Conv1”) % 卷积核大小 3*1 生成16张特征图
batchNormalizationLayer(“Name”, “BN1”) % 批归一化层
reluLayer(“Name”, “Relu1”) % Relu激活层

convolution2dLayer([3, 1], 32, “Name”, “Conv2”) % 卷积核大小 3*1 生成32张特征图
batchNormalizationLayer(“Name”, “BN2”) % 批归一化层
reluLayer(“Name”, “Relu2”) % Relu激活层

dropoutLayer(0.5, “Name”, “dorpout”) % Dropout层
fullyConnectedLayer(1, “Name”, “full_1”) % 全连接层
regressionLayer]; % 回归层

%% 参数设置
options = trainingOptions(‘sgdm’, … % SGDM 梯度下降算法
‘MiniBatchSize’, best_hd, … % 批大小,每次训练样本个数
‘MaxEpochs’, 500, … % 最大训练次数 500
‘InitialLearnRate’, best_lr, … % 初始学习率为
‘LearnRateSchedule’, ‘piecewise’, … % 学习率下降
‘LearnRateDropFactor’, 0.1, … % 学习率下降因子 0.1
‘LearnRateDropPeriod’, 400, … % 经过400次训练后 学习率为 0.01 * 0.1
‘Shuffle’, ‘every-epoch’, … % 每次训练打乱数据集
‘L2Regularization’, best_l2, … % L2正则化参数
‘Plots’, ‘training-progress’, … % 画出曲线
‘Verbose’, false);

%% 训练模型
net = trainNetwork(p_train, t_train, layers, options);

%% 提取特征
layer = ‘Relu2’;
p_train = activations(net, p_train, layer, ‘OutputAs’, ‘rows’);
p_test = activations(net, p_test , layer, ‘OutputAs’, ‘rows’);

%% 类型转换
p_train = double(p_train); p_test = double(p_test);
t_train = double(t_train); t_test = double(t_test);

%% 创建模型
model = fitrsvm(p_train, t_train,…
‘Standardize’, true,… % 打开标准化
‘KernelFunction’, ‘gaussian’,… % 选用高斯核函数
‘OptimizeHyperparameters’, ‘auto’,… % 自动优化参数 { BoxConstraint, KernelScale, Epsilon}
‘HyperparameterOptimizationOptions’,… % 自动优化参数选项
struct(‘ShowPlots’, false)); % 关掉图形显示

%% 仿真测试
t_sim1 = predict(model, p_train);
t_sim2 = predict(model, p_test);

%% 数据反归一化
T_sim1 = mapminmax(‘reverse’, t_sim1’, ps_output);
T_sim2 = mapminmax(‘reverse’, t_sim2’, ps_output);
T_sim1=double(T_sim1);
T_sim2=double(T_sim2);
%% 测试集结果
figure;
plotregression(T_test,T_sim2,[‘回归图’]);
set(gcf,‘color’,‘w’)
figure;
ploterrhist(T_test-T_sim2,[‘误差直方图’]);
set(gcf,‘color’,‘w’)

%% 均方根误差 RMSE
error1 = sqrt(sum((T_sim1 - T_train).^2)./M);
error2 = sqrt(sum((T_test - T_sim2).^2)./N);

%%
%决定系数
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;

%%
%均方误差 MSE
mse1 = sum((T_sim1 - T_train).^2)./M;
mse2 = sum((T_sim2 - T_test).^2)./N;
%%
%RPD 剩余预测残差
SE1=std(T_sim1-T_train);
RPD1=std(T_train)/SE1;

SE=std(T_sim2-T_test);
RPD2=std(T_test)/SE;
%% 平均绝对误差MAE
MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));

%% 优化曲线
figure
plot(curve, ‘linewidth’,1.5);
title(‘WOA-CNN-SVM’)
xlabel(‘迭代次数’)
ylabel(‘适应度’)
grid on;
set(gcf,‘color’,‘w’)

%% 训练集绘图
figure
plot(1:M,T_train,‘r-*’,1:M,T_sim1,‘b-o’,‘LineWidth’,1.5)
legend(‘真实值’,‘WOA-CNN-SVM预测值’)
xlabel(‘预测样本’)
ylabel(‘预测结果’)
string={‘训练集预测结果对比’;[‘(R^2 =’ num2str(R1) ’ RMSE= ’ num2str(error1) ’ MSE= ’ num2str(mse1) ’ RPD= ’ num2str(RPD1) ‘)’ ]};
title(string)
set(gcf,‘color’,‘w’)

%% 预测集绘图
figure
plot(1:N,T_test,‘r-*’,1:N,T_sim2,‘b-o’,‘LineWidth’,1.5)
legend(‘真实值’,‘WOA-CNN-SVM预测值’)
xlabel(‘预测样本’)
ylabel(‘预测结果’)
string={‘测试集预测结果对比’;[‘(R^2 =’ num2str(R2) ’ RMSE= ’ num2str(error2) ’ MSE= ’ num2str(mse2) ’ RPD= ’ num2str(RPD2) ‘)’]};
title(string)
set(gcf,‘color’,‘w’)

%% 测试集误差图
figure
ERROR3=T_test-T_sim2;
plot(T_test-T_sim2,‘b-*’,‘LineWidth’,1.5)
xlabel(‘测试集样本编号’)
ylabel(‘预测误差’)
title(‘测试集预测误差’)
grid on;
legend(‘预测输出误差’)
set(gcf,‘color’,‘w’)

%% 绘制线性拟合图
%% 训练集拟合效果图
figure
plot(T_train,T_sim1,‘*r’);
xlabel(‘真实值’)
ylabel(‘预测值’)
string = {‘训练集效果图’;[‘R^2_c=’ num2str(R1) ’ RMSEC=’ num2str(error1) ]};
title(string)
hold on ;h=lsline;
set(h,‘LineWidth’,1,‘LineStyle’,‘-’,‘Color’,[1 0 1])
set(gcf,‘color’,‘w’)

%% 预测集拟合效果图
figure
plot(T_test,T_sim2,‘ob’);
xlabel(‘真实值’)
ylabel(‘预测值’)
string1 = {‘测试集效果图’;[‘R^2_p=’ num2str(R2) ’ RMSEP=’ num2str(error2) ]};
title(string1)
hold on ;h=lsline();
set(h,‘LineWidth’,1,‘LineStyle’,‘-’,‘Color’,[1 0 1])
set(gcf,‘color’,‘w’)

%% 求平均
R3=(R1+R2)./2;
error3=(error1+error2)./2;
%% 总数据线性预测拟合图
tsim=[T_sim1,T_sim2]‘;
S=[T_train,T_test]’;
figure
plot(S,tsim,‘ob’);
xlabel(‘真实值’)
ylabel(‘预测值’)
string1 = {‘所有样本拟合预测图’;[‘R^2_p=’ num2str(R3) ’ RMSEP=’ num2str(error3) ]};
title(string1)
hold on ;h=lsline();
set(h,‘LineWidth’,1,‘LineStyle’,‘-’,‘Color’,[1 0 1])
set(gcf,‘color’,‘w’)

%% 打印出评价指标
disp([‘-----------------------误差计算--------------------------’])
disp([‘评价结果如下所示:’])
disp([‘平均绝对误差MAE为:’,num2str(MAE2)])
disp(['均方误差MSE为: ',num2str(mse2)])
disp(['均方根误差RMSE为: ',num2str(error2)])
disp(['决定系数R^2为: ',num2str(R2)])
disp(['剩余预测残差RPD为: ',num2str(RPD2)])
disp(['平均绝对百分比误差MAPE为: ',num2str(MAPE2)])
grid

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.
[3]周品.MATLAB 神经网络设计与应用[M].清华大学出版社,2013.
[4]陈明.MATLAB神经网络原理与实例精解[M].清华大学出版社,2013.
[5]方清城.MATLAB R2016a神经网络设计与应用28个案例分析[M].清华大学出版社,2018.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

svm分类基于Matlab鸽群算法优化支持向量机(SVM)数据分类是一种利用鸽群算法优化SVM模型参数并进行数据分类的方法。鸽群算法是一种基于自然界鸟群觅食行为的优化算法,通过模拟鸟群中鸟类之间的信息交流和协作,来求解最优化问题。 在使用鸽群算法优化SVM模型之前,我们首先需要了解SVM模型的原理。SVM是一种二分类模型,通过在特征空间中找到一个最优的超平面来实现数据的分类。在SVM模型中,支持向量是决定超平面位置和方向的关键要素。 鸽群算法优化SVM模型的过程如下: 1. 初始化鸽群规模和初始解。 2. 根据当前解,计算每个个体适应度值。适应度值反映了个体解的好坏程度。 3. 选择适应度最好的个体作为当前最佳解,并保存其对应的超平面参数。 4. 利用鸽群的信息交流和协作,更新所有鸽子的位置和速度。 5. 根据更新后的位置和速度,计算新解的适应度值。 6. 根据新解的适应度值,更新当前最佳解。 7. 重复步骤4-6,直至满足停止准则或达到最大迭代次数。 通过鸽群算法优化SVM模型,可以得到一组最佳的超平面参数,从而实现对数据的分类。这种方法能够克服传统的SVM模型由于初始解的不合理和局部最优解的问题,进而改善了分类结果的准确性和鲁棒性。 以下是一个简化的Matlab源码示例(仅供参考): ```matlab % 设置鸽群规模和最大迭代次数 N = 50; MaxIter = 100; % 初始化鸽子位置和速度 X = rand(N, 2); V = rand(N, 2); % 初始化最佳解和适应度值 BestX = zeros(1, 2); BestFitness = inf; % 迭代优化 for iter = 1:MaxIter % 计算适应度值 fitness = CalculateFitness(X); % 更新最佳解 [minFitness, minIndex] = min(fitness); if minFitness < BestFitness BestFitness = minFitness; BestX = X(minIndex, :); end % 更新速度和位置 V = UpdateVelocity(V, X, BestX); X = UpdatePosition(X, V); end % 输出最佳解和适应度值 disp('Best Solution:'); disp(BestX); disp('Best Fitness:'); disp(BestFitness); % 计算适应度值的函数 function fitness = CalculateFitness(X) % 计算每个个体的适应度值 % ... end % 更新速度的函数 function V = UpdateVelocity(V, X, BestX) % 根据鸽子当前位置和最佳解更新速度 % ... end % 更新位置的函数 function X = UpdatePosition(X, V) % 根据鸽子当前速度更新位置 % ... end ``` 以上是关于基于Matlab鸽群算法优化支持向量机(SVM)数据分类的简要介绍和示例源码。这种方法可以提高SVM模型的性能,但在实际应用中还需要根据具体情况进行调试和优化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值