💥💥💥💥💞💞💞💞💞💞欢迎来到玄武科研社博客之家💞💞💞💞💞💞💥💥💥💥
✅博主简介:985研究生,热爱科研的Matlab仿真开发者,完整代码 论文复现 程序定制 期刊写作 科研合作 扫描文章底部QQ二维码。
🍎个人主页:玄武科研社
🏆代码获取方式:扫描文章底部QQ二维码
⛳️座右铭:行百里者,半于九十。
更多Matlab路径规划仿真内容点击👇
①Matlab路径规划(玄武科研社版)
⛳️关注微信公众号Matlab王者助手或Matlab海神之光,更多资源等你来!!
⛄一、A_star算法简介
1 A Star算法及其应用现状
进行搜索任务时提取的有助于简化搜索过程的信息被称为启发信息.启发信息经过文字提炼和公式化后转变为启发函数.启发函数可以表示自起始顶点至目标顶点间的估算距离, 也可以表示自起始顶点至目标顶点间的估算时间等.描述不同的情境、解决不同的问题所采用的启发函数各不相同.我们默认将启发函数命名为H (n) .以启发函数为策略支持的搜索方式我们称之为启发型搜索算法.在救援机器人的路径规划中, A Star算法能结合搜索任务中的环境情况, 缩小搜索范围, 提高搜索效率, 使搜索过程更具方向性、智能性, 所以A Star算法能较好地应用于机器人路径规划相关领域.
2 A Star算法流程
承接2.1节, A Star算法的启发函数是用来估算起始点到目标点的距离, 从而缩小搜索范围, 提高搜索效率.A Star算法的数学公式为:F (n) =G (n) +H (n) , 其中F (n) 是从起始点经由节点n到目标点的估计函数, G (n) 表示从起点移动到方格n的实际移动代价, H (n) 表示从方格n移动到目标点的估算移动代价.
如图2所示, 将要搜寻的区域划分成了正方形的格子, 每个格子的状态分为可通过(walkable) 和不可通过 (unwalkable) .取每个可通过方块的代价值为1, 且可以沿对角移动 (估值不考虑对角移动) .其搜索路径流程如下:
图2 A Star算法路径规划
Step1:定义名为open和closed的两个列表;open列表用于存放所有被考虑来寻找路径的方块, closed列表用于存放不会再考虑的方块;
Step2:A为起点, B为目标点, 从起点A开始, 并将起点A放入open列表中, closed列表初始化为空;
Step3:查看与A相邻的方格n (n称为A的子点, A称为n的父点) , 可通过的方格加入到open列表中, 计算它们的F, G和H值.将A从open移除加入到closed列表中;
Step4:判断open列表是否为空, 如果是, 表示搜索失败, 如果不是, 执行下一步骤;
Step5:将n从open列表移除加入到closed列表中, 判断n是否为目标顶点B, 如果是, 表示搜索成功, 算法运行结束;
Step6:如果不是, 则扩展搜索n的子顶点:
a.如果子顶点是不可通过或在close列表中, 忽略它.
b.子顶点如果不在open列表中, 则加入open列表, 并且把当前方格设置为它的父亲, 记录该方格的F, G和H值.
Step7:跳转到步骤Step4;
Step8:循环结束, 保存路径.从终点开始, 每个方格沿着父节点移动直至起点, 即是最优路径.A Star算法流程图如图3所示.
图3 A Star算法流程
3 A_Star算法多机器人牛耕式分区路径规划
下面是使用A*算法进行多机器人牛耕式分区路径规划的基本步骤:
定义问题:将分区划分为格子(或节点),每个格子表示一个可到达的位置。将每个机器人的起始位置和目标位置映射到对应的格子。
初始化数据结构:创建一个空的优先级队列(通常使用最小堆),用于存储待扩展的节点。同时,为每个机器人创建一个起始节点,并将其加入到优先级队列中。
迭代搜索:重复以下步骤直到找到所有机器人的路径或无法找到路径为止:
a. 从优先级队列中取出具有最小估价函数值(启发式评估值+已经走过的距离)的节点。
b. 检查该节点是否为目标节点,如果是,则找到了一条机器人的路径,将其存储起来。
c. 扩展当前节点,生成相邻的可行节点,并计算它们的估价函数值。
d. 将生成的节点加入优先级队列中。
合并路径:当所有机器人都找到了路径后,将它们的路径进行合并,以得到多机器人的最终路径规划结果。
在上述步骤中,需要定义适当的启发式函数(估价函数),用于估计从当前节点到目标节点的代价。启发式函数可以基于距离、障碍物等因素进行定义,以指导搜索过程。
需要注意的是,多机器人牛耕式分区路径规划问题可能存在冲突和协作等方面的考虑,因此在具体应用中可能需要进行更复杂的算法设计和策略制定。
⛄二、部分源代码
clc
clear
close all
row=40;
col=50;
ImpRgb = imread(‘003.png’);
ImpRgb=imresize(ImpRgb,[row col]);
Imp = rgb2gray(ImpRgb);
sign=im2bw(Imp,0.5);
sign=~sign;
sign=flipud(sign);
figure(1)%画图
hold on
axis([0 col 0 row]);
grid on;
title(‘分区图1’)
for i=1:row
for j=1:col
if sign(i,j)==1
y=[i-1,i-1,i,i];
x=[j-1,j,j,j-1];
h=fill(x,y,‘k’);
set(h,‘facealpha’,1)
end
end
end
sign_ori=sign;%记录原始的障碍矩阵
sign_fenqu=[];
fenqu_num=1;%分区数量初始值
while true
sign_temp=zeros(row,col);
for i=1:col
if ~isempty(find(sign(:,i)0))
S_col=i;%区域的起始列
break
end
end
flag_fangxiang=0;%搜索方向是自下而上还是自上而下
if sign(1,S_col)1&&sign(row,S_col)0
flag_fangxiang=1;
end
flag1=0;
if flag_fangxiang0%自下而上搜索
for i=1:row
if flag10&&sign(i,S_col)0
S1_row=i;%记录起始行
flag1=1;
end
if flag11&&sign(i,S_col)1
E1_row=i-1;%记录终止行
break
elseif flag11&&irow
E1_row=i;
end
end
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]钱程,许映秋,谈英姿.A Star算法在RoboCup救援仿真中路径规划的应用[J].指挥与控制学报. 2017,3(03)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合