✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

⛄ 内容介绍

时间序列预测是一项重要的任务,它在金融、交通、气象等领域中具有广泛的应用。BP神经网络是一种常用的时间序列预测方法,然而,该方法存在着训练速度慢和易陷入局部最优等问题。

为了克服这些问题,研究人员提出了许多优化算法来改进BP神经网络的性能。其中,粒子群优化算法(Particle Swarm Optimization,PSO)是一种受到生物群体行为启发的优化算法,已经在时间序列预测中取得了显著的成果。

PSO算法通过模拟鸟群觅食行为,将解空间中的每个解看作粒子,并通过不断地调整粒子的速度和位置来寻找最优解。在优化BP神经网络中,PSO算法通过调整网络的权重和阈值来提高网络的性能。通过将PSO算法与BP神经网络相结合,可以充分利用PSO算法的全局搜索能力和BP神经网络的优化能力,从而提高时间序列预测的准确性和效率。

与传统的BP神经网络相比,基于粒子群优化算法优化的BP神经网络具有以下优势:

  1. 提高训练速度:PSO算法通过全局搜索的方式,能够更快地找到最优解,从而加快了BP神经网络的训练速度。
  2. 避免局部最优:由于PSO算法具有全局搜索能力,它能够避免BP神经网络陷入局部最优解,从而提高了网络的性能。
  3. 提高预测准确性:通过优化BP神经网络的权重和阈值,PSO算法能够提高网络的预测准确性,使得时间序列预测结果更加准确和可靠。

综上所述,基于粒子群优化算法优化BP神经网络是一种有效的时间序列预测方法。它能够克服传统BP神经网络的训练速度慢和易陷入局部最优等问题,提高预测准确性和效率。在实际应用中,研究人员可以根据具体问题的特点选择合适的PSO算法参数和网络结构,以获得更好的预测结果。

⛄ 部分代码

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据(时间序列的单列数据)
result = xlsread('数据集.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 15;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测

%%  构造数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end

%%  划分训练集和测试集
temp = 1: 1: 922;

P_train = res(temp(1: 700), 1: 15)';
T_train = res(temp(1: 700), 16)';
M = size(P_train, 2);

P_test = res(temp(701: end), 1: 15)';
T_test = res(temp(701: end), 16)';
N = size(P_test, 2);

⛄ 运行结果

【时序预测】基于粒子群优化算法优化BP神经网络的时间序列预测附matlab代码_神经网络

【时序预测】基于粒子群优化算法优化BP神经网络的时间序列预测附matlab代码_神经网络_02

【时序预测】基于粒子群优化算法优化BP神经网络的时间序列预测附matlab代码_神经网络_03

⛄ 参考文献

[1] 徐宗宝.基于混合优化BP神经网络的水质预测系统的研究与实现[D].北京工业大学[2023-08-07].

[2] 李瑞国,张宏立,王雅.基于量子粒子群优化算法的新型正交基神经网络分数阶混沌时间序列单步预测[J].计算机应用, 2015.DOI:JournalArticle/5b3bf4b5c095d70f009b34c0.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合