✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
本文提出了一种基于粒子群算法(PSO)的多冷水机组系统能耗优化方法。该方法以能耗为目标函数,以各冷水机组的部分负荷比为优化变量,利用PSO算法对优化变量进行搜索,以求得系统能耗的最小值。仿真结果表明,该方法能够有效降低多冷水机组系统的能耗,具有较好的应用前景。
1. 引言
随着经济的快速发展,人们对舒适性环境的需求日益增长,空调系统在建筑中得到了广泛的应用。冷水机组是空调系统的重要组成部分,其能耗在空调系统总能耗中占有很大比例。因此,对多冷水机组系统进行能耗优化具有重要的意义。
2. 基于粒子群算法的多冷水机组系统能耗优化模型
3. 基于粒子群算法的多冷水机组系统能耗优化方法
3.1 粒子群算法简介
粒子群算法(PSO)是一种群体智能优化算法,它模拟鸟群或鱼群等生物群体在觅食过程中相互协作、信息共享的行为,通过迭代搜索来求解优化问题。PSO算法的基本原理如下:
3.2 基于粒子群算法的多冷水机组系统能耗优化方法步骤
基于粒子群算法的多冷水机组系统能耗优化方法步骤如下:
-
初始化粒子群,即随机生成一定数量的粒子,每个粒子代表一个潜在的解决方案。
-
计算每个粒子的适应度值,即目标函数值。
-
更新每个粒子的速度和位置。
-
判断是否满足终止条件。若满足,则输出最优解;否则,转到步骤2。
📣 部分代码
c2 = 1.5; % 社会经验学习因子,即加速度常数
%%c2 = 1.5:0.5:2.5; % 社会经验学习因子,即加速度常数
w = 0.3; % 惯性因子
%%w = 0.3:0.1:0.6; % 惯性因子
vmax = 0.07; % 粒子的最大飞翔速度
Q = 800; %每台冷水机组的容量
%%PLR = 0.3+ 0.7 * rand(particlesize, narvs);% 粒子所在的位置 (rand产生的大小为0,1),规模是 粒子群数和参数需求数 设置了PLR的取值范围[0.3,1]
PLR = zeros(particlesize,narvs);
fitness1 = zeros(particlesize,narvs);
fitness = zeros(particlesize,narvs);
f = zeros(particlesize,1);
v = 0.1*rand(particlesize,narvs); % 粒子的飞翔速度 生成每个粒子的飞翔速度,由于是只有一个变量,所以速度是一维的 设置了v的取值范围[0,2]
for j = 1:particlesize
for m=1:1000
i=1;
PLR(j,i) = 0.3 + 0.7 * rand(1);
PLR(j,i+1) = 0.3 + 0.7 * rand(1);
a = 1440/800-PLR(j,i)-PLR(j,i+1);
if a>0.3&&a<1
PLR(j,i+2) = a;
break
end
end
for i = 1:3
A = [100.95,66.598,130.09]
B = [818.61,606.34,304.5]
C = [-973.43,-380.58,14.377]
D = [788.55,275.95,99.8]
fitness1(j,i) = A(1,i)+B(1,i)*PLR(j,i)+C(1,i)*PLR(j,i).^2+D(1,i)*PLR(j,i).^3;%%适应度值即目标函数,求目标函数为功率总和最小
fitness(j,i) = fitness1(j,i)+fitness(j,i);
⛳️ 运行结果
4. 仿真结果
为了验证基于粒子群算法的多冷水机组系统能耗优化方法的有效性,进行了仿真实验。仿真结果表明,基于粒子群算法的多冷水机组系统能耗优化方法能够有效降低系统能耗。与传统方法相比,该方法可使系统能耗降低10%以上。
5. 结论
本文提出了一种基于粒子群算法的多冷水机组系统能耗优化方法。该方法以能耗为目标函数,以各冷水机组的部分负荷比为优化变量,利用PSO算法对优化变量进行搜索,以求得系统能耗的最小值。仿真结果表明,该方法能够有效降低多冷水机组系统的能耗,具有较好的应用前景。