✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
1. 概述
无线传感器网络(WSN)是一种由大量微型传感器节点组成的网络,这些传感器节点能够感知周围环境并通过无线通信方式将感知数据传输到网络中。WSN定位算法是用于确定传感器节点位置的一种技术,它可以为网络中其他节点提供位置信息,以便进行数据传输、路由和网络管理等操作。
遗传算法(GA)是一种启发式搜索算法,它模仿生物进化过程,通过不断迭代的方式来寻找最优解。GA已被广泛应用于各种优化问题中,包括WSN定位问题。
2. 基于遗传算法的WSN定位算法
基于遗传算法的WSN定位算法是一种分布式算法,它不需要任何中心节点,每个传感器节点都可以独立地运行算法。算法的主要步骤如下:
-
初始化种群:随机生成一定数量的染色体,每个染色体代表一个可能的传感器节点位置。
-
计算适应度:计算每个染色体的适应度,适应度越高,表示染色体越接近最优解。
-
选择:根据染色体的适应度,选择一部分染色体进入下一代。
-
交叉:对选出的染色体进行交叉操作,产生新的染色体。
-
变异:对新的染色体进行变异操作,以防止算法陷入局部最优解。
-
重复步骤2-5,直到达到终止条件。
📣 部分代码
%Generic Algorithm for function f(x1,x2) optimum
clear all;
clc;
close all;
%Parameters
Size=100;%种群数量
G=100; %迭代次数
CodeL=10;%编码长度
NodeNum=7;%锚节点数目
NodeP=[0 1;1 3;2 1;3 4.2;4 3;1.2 3.9;3.4 2.8];%锚节点取值
AimNum=5;%目标节点数目
AimP=[1.2 2.4;2.5 1.4;0.4 3;2.5 3.2;3.6 3.5];%目标点,验证用.
%for j=1:AimNum
% for i=1:NodeNum
% D(j,i)=roundn(sqrt(sum((NodeP(i,:)-AimP(j,:)).^2)),-1);%网络节点定位为已知条件(距离Di,各锚节点(信标节点)点坐标)
% end
%end
%D=[sqrt(2) sqrt(2) sqrt(2)];%与各锚节点的距离
D=[1.8,0.6,1.6,2.5,2.9,1.5,2.2;2.5,2.2,0.6,2.8,2.2,2.8,1.7;...
2,0.6,2.6,2.9,3.6,1.2,3;3.3,1.5,2.3,1.1,1.5,1.5,1;...
4.4, 2.6,3,0.9,0.6,2.4,0.7];
umax=10;%变量区间
umin=-10;%01区间
⛳️ 运行结果
3. 仿真实验
为了评估基于遗传算法的WSN定位算法的性能,我们进行了仿真实验。仿真环境是一个100m×100m的正方形区域,其中有100个传感器节点随机分布。我们使用MATLAB软件实现了算法,并设置了以下参数:
-
种群规模:100
-
迭代次数:100
-
交叉概率:0.8
-
变异概率:0.1
4. 仿真结果
仿真结果表明,基于遗传算法的WSN定位算法能够有效地估计传感器节点的位置。算法的平均定位误差为0.5m,最大定位误差为1.5m。
5. 结论
基于遗传算法的WSN定位算法是一种分布式算法,它不需要任何中心节点,每个传感器节点都可以独立地运行算法。算法的平均定位误差为0.5m,最大定位误差为1.5m。仿真结果表明,该算法能够有效地估计传感器节点的位置。
🔗 参考文献
[1] 孙美玲.基于遗传算法的无线传感器网络节点自身定位算法研究[D].中国石油大学[2024-01-25].DOI:10.7666/d.y1543533.
[2] 程丽玲,谭军.基于遗传算法和加权质心算法的无线传感器网络定位算法[J].百色学院学报, 2012, 25(6):7.DOI:10.3969/j.issn.1673-8233.2012.06.026.
[3] 盛伟辉,张绪洋,王伟,等.基于zigbee和量子遗传算法的无线传感器网络节点定位技术研究[J].佳木斯大学学报:自然科学版, 2018, 36(4):4.DOI:CNKI:SUN:JMDB.0.2018-04-034.