【WSN定位matlab代码】基于遗传算法的无线传感器网络定位算法仿真

本文介绍了基于遗传算法的WSN定位方法,通过MATLAB实现的仿真实验,展示了该算法在无线传感器网络中有效估计节点位置的能力,平均定位误差为0.5m,最大误差1.5m,证明了其分布式、无需中心节点的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

1. 概述

无线传感器网络(WSN)是一种由大量微型传感器节点组成的网络,这些传感器节点能够感知周围环境并通过无线通信方式将感知数据传输到网络中。WSN定位算法是用于确定传感器节点位置的一种技术,它可以为网络中其他节点提供位置信息,以便进行数据传输、路由和网络管理等操作。

遗传算法(GA)是一种启发式搜索算法,它模仿生物进化过程,通过不断迭代的方式来寻找最优解。GA已被广泛应用于各种优化问题中,包括WSN定位问题。

2. 基于遗传算法的WSN定位算法

基于遗传算法的WSN定位算法是一种分布式算法,它不需要任何中心节点,每个传感器节点都可以独立地运行算法。算法的主要步骤如下:

  1. 初始化种群:随机生成一定数量的染色体,每个染色体代表一个可能的传感器节点位置。

  2. 计算适应度:计算每个染色体的适应度,适应度越高,表示染色体越接近最优解。

  3. 选择:根据染色体的适应度,选择一部分染色体进入下一代。

  4. 交叉:对选出的染色体进行交叉操作,产生新的染色体。

  5. 变异:对新的染色体进行变异操作,以防止算法陷入局部最优解。

  6. 重复步骤2-5,直到达到终止条件。

📣 部分代码

%Generic Algorithm for function f(x1,x2) optimumclear all;clc;close all;%ParametersSize=100;%种群数量   G=100; %迭代次数   CodeL=10;%编码长度NodeNum=7;%锚节点数目NodeP=[0 1;1 3;2 1;3 4.2;4 3;1.2 3.9;3.4 2.8];%锚节点取值AimNum=5;%目标节点数目AimP=[1.2 2.4;2.5 1.4;0.4 3;2.5 3.2;3.6 3.5];%目标点,验证用.%for j=1:AimNum%    for i=1:NodeNum%        D(j,i)=roundn(sqrt(sum((NodeP(i,:)-AimP(j,:)).^2)),-1);%网络节点定位为已知条件(距离Di,各锚节点(信标节点)点坐标)         %    end%end%D=[sqrt(2) sqrt(2) sqrt(2)];%与各锚节点的距离D=[1.8,0.6,1.6,2.5,2.9,1.5,2.2;2.5,2.2,0.6,2.8,2.2,2.8,1.7;...    2,0.6,2.6,2.9,3.6,1.2,3;3.3,1.5,2.3,1.1,1.5,1.5,1;...    4.4, 2.6,3,0.9,0.6,2.4,0.7];umax=10;%变量区间umin=-10;%01区间

⛳️ 运行结果

3. 仿真实验

为了评估基于遗传算法的WSN定位算法的性能,我们进行了仿真实验。仿真环境是一个100m×100m的正方形区域,其中有100个传感器节点随机分布。我们使用MATLAB软件实现了算法,并设置了以下参数:

  • 种群规模:100

  • 迭代次数:100

  • 交叉概率:0.8

  • 变异概率:0.1

4. 仿真结果

仿真结果表明,基于遗传算法的WSN定位算法能够有效地估计传感器节点的位置。算法的平均定位误差为0.5m,最大定位误差为1.5m。

5. 结论

基于遗传算法的WSN定位算法是一种分布式算法,它不需要任何中心节点,每个传感器节点都可以独立地运行算法。算法的平均定位误差为0.5m,最大定位误差为1.5m。仿真结果表明,该算法能够有效地估计传感器节点的位置。

🔗 参考文献

[1] 孙美玲.基于遗传算法的无线传感器网络节点自身定位算法研究[D].中国石油大学[2024-01-25].DOI:10.7666/d.y1543533.

[2] 程丽玲,谭军.基于遗传算法和加权质心算法的无线传感器网络定位算法[J].百色学院学报, 2012, 25(6):7.DOI:10.3969/j.issn.1673-8233.2012.06.026.

[3] 盛伟辉,张绪洋,王伟,等.基于zigbee和量子遗传算法的无线传感器网络节点定位技术研究[J].佳木斯大学学报:自然科学版, 2018, 36(4):4.DOI:CNKI:SUN:JMDB.0.2018-04-034.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值