【直线检测】基于霍夫变换合Harris实现建筑物直线和角点检测附matlab代码

文章介绍了一种新的方法,通过将霍夫变换与Harris角点检测结合,提高建筑物图像中直线和角点的检测准确性与鲁棒性,尤其在处理噪声和复杂场景时表现出色,适用于建筑识别、重建和测量等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

本文提出了一种基于霍夫变换和 Harris 角点检测相结合的方法,用于检测建筑物图像中的直线和角点。该方法利用霍夫变换检测图像中的直线,并使用 Harris 角点检测算法检测角点。通过将这两个方法相结合,可以提高直线和角点检测的准确性和鲁棒性。

引言

直线和角点是建筑物图像中重要的特征,它们对于建筑物识别、重建和测量至关重要。传统上,直线检测使用霍夫变换,而角点检测使用 Harris 角点检测算法。然而,这些方法在某些情况下可能存在局限性。例如,霍夫变换在检测短直线或噪声图像中的直线时可能不准确,而 Harris 角点检测算法在检测圆形或椭圆形角点时可能不鲁棒。

方法

为了克服这些局限性,我们提出了一种基于霍夫变换和 Harris 角点检测相结合的方法。该方法的步骤如下:

  1. **图像预处理:**对图像进行高斯滤波以去除噪声。

  2. **霍夫变换:**使用霍夫变换检测图像中的直线。霍夫变换将图像中的每个点映射到参数空间中的一条直线。通过对参数空间进行聚类,可以检测到图像中的直线。

  3. **Harris 角点检测:**使用 Harris 角点检测算法检测图像中的角点。Harris 角点检测算法计算图像中每个点的角点响应函数,并选择响应函数值高于阈值的点作为角点。

  4. **直线和角点关联:**将霍夫变换检测到的直线与 Harris 角点检测到的角点关联起来。如果一条直线经过一个角点,则该直线和角点被关联起来。

  5. **后处理:**对检测到的直线和角点进行后处理,以去除冗余和噪声。

实验结果

我们使用建筑物图像数据集对该方法进行了评估。实验结果表明,该方法在检测直线和角点方面具有较高的准确性和鲁棒性。与仅使用霍夫变换或 Harris 角点检测算法的方法相比,该方法的性能得到了显著提高。

结论

我们提出了一种基于霍夫变换和 Harris 角点检测相结合的方法,用于检测建筑物图像中的直线和角点。该方法利用了霍夫变换和 Harris 角点检测算法的优势,提高了直线和角点检测的准确性和鲁棒性。该方法可以广泛应用于建筑物识别、重建和测量等领域。

📣 部分代码

clear;close all;%%% StartI = imread('villa_image_2.png');I=im2double(I);I = im2double(rgb2gray(I));size=size(I);figure(1),imshow(I),title('original image');%%%edgesedges = edge(I, 'canny');figure(2), imshow([edges]),title('edges');%%%Harris measuredx = [-1 0 1; -1 0 1; -1 0 1];   % Derivative masksdy = dx';Ix = conv2(I, dx, 'same');      % Image derivativesIy = conv2(I, dy, 'same');SIGMA_gaussian=4;%%%Hough transform[H,theta,rho] = hough(edges);figure(7)imshow(imadjust(rescale(H)),[],...       'XData',theta,...       'YData',rho,...%%%Find straight lines with Houghlines = houghlines(edges,theta,rho,P,'FillGap',20,'MinLength',40);figure(8), imshow(I),title('Straight Lines') ,hold onmax_len = 0;for k = 1:length(lines)   xy = [lines(k).point1; lines(k).point2];   plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','cyan');   % Plot beginnings and ends of lines   plot(xy(1,1),xy(1,2),'o','LineWidth',2,'Color','red');   plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','green');end

⛳️ 运行结果

🔗 参考文献

[1] 孟祥希.基于全景视觉的自动泊车方法研究[D].吉林大学[2024-03-05].

[2] 汪涛,成孝刚,李德志,等.基于霍夫变换与角点检测的叶脉特征提取算法[J].计算机技术与发展, 2019, 29(11):4.DOI:10.3969/j.issn.1673-629X.2019.11.032.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值