SCI一区级 | EVO-CNN-BiLSTM-Mutilhead-Attention能量谷优化算法优化卷积双向长短期记忆神经网络融合多头注意力机制多变量多步时间序列预测Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

摘要

本文提出了一种基于能量谷算法优化多头注意力机制的卷积神经网络结合长短记忆神经网络(EVO-CNN-BiLSTM-Multihead-Attention)的温度预测模型。该模型将能量谷算法应用于多头注意力机制中,通过优化注意力权重矩阵,增强模型对温度序列特征的提取能力。同时,该模型结合了卷积神经网络和长短记忆神经网络,充分利用了温度序列的时空特征。实验结果表明,该模型在多个温度数据集上取得了优异的预测性能,有效提高了温度预测的准确性。

1. 引言

温度预测在气象学、农业和工业等领域具有重要的应用价值。近年来,深度学习技术在时间序列预测领域取得了显著的进展,为温度预测提供了新的方法。

2. 方法

2.1 能量谷算法优化多头注意力机制

多头注意力机制是一种强大的注意力机制,能够同时关注序列中不同位置的信息。然而,传统的注意力机制权重矩阵的计算方式存在一定局限性,无法充分挖掘温度序列中的关键特征。

能量谷算法是一种基于能量函数的优化算法,具有良好的全局搜索能力。本文将能量谷算法应用于多头注意力机制中,优化注意力权重矩阵。具体来说,将注意力权重矩阵的计算公式转换为能量函数,并使用能量谷算法求解最优解。通过优化注意力权重矩阵,增强了模型对温度序列特征的提取能力。

2.2 EVO-CNN-BiLSTM-Multihead-Attention 模型

该模型由能量谷算法优化多头注意力机制、卷积神经网络和长短记忆神经网络组成。卷积神经网络能够提取温度序列的局部特征,长短记忆神经网络能够学习温度序列的长期依赖关系。

模型的结构如下:

  • 输入层:接收温度序列数据。

  • 卷积层:提取温度序列的局部特征。

  • 多头注意力层:使用能量谷算法优化后的多头注意力机制,提取温度序列的关键特征。

  • 双向长短记忆层:学习温度序列的长期依赖关系。

  • 全连接层:输出温度预测结果。

📣 部分代码

%% 初始化clearclose allclcwarning off%输入输出数据input=data(:,1:end-1);    %data的第一列-倒数第二列为特征指标output=data(:,end);  %data的最后面一列为输出的指标值N=length(output);   %全部样本数目testNum=15;   %设定测试样本数目trainNum=N-testNum;    %计算训练样本数目%% 划分训练集、测试集input_train = input(1:trainNum,:)';output_train =output(1:trainNum)';input_test =input(trainNum+1:trainNum+testNum,:)';output_test =output(trainNum+1:trainNum+testNum)';%% 数据归一化[inputn,inputps]=mapminmax(input_train,0,1);[outputn,outputps]=mapminmax(output_train);inputn_test=mapminmax('apply',input_test,inputps);%% 获取输入层节点、输出层节点个数

⛳️ 运行结果

3. 实验

3.1 数据集

使用三个温度数据集进行实验:

  • 气象数据集:包含逐小时气温数据。

  • 农业数据集:包含逐日农作物温度数据。

  • 工业数据集:包含逐时工业设备温度数据。

3.2 评价指标

使用均方根误差(RMSE)和平均绝对误差(MAE)作为评价指标。

3.3 实验结果

实验结果表明,EVO-CNN-BiLSTM-Multihead-Attention 模型在三个数据集上均取得了优异的预测性能。与其他基准模型相比,该模型的 RMSE 和 MAE 均显著降低。

4. 结论

本文提出的 EVO-CNN-BiLSTM-Multihead-Attention 模型将能量谷算法优化多头注意力机制应用于温度预测,有效提高了模型对温度序列特征的提取能力。结合卷积神经网络和长短记忆神经网络,该模型充分利用了温度序列的时空特征。实验结果表明,该模型在多个温度数据集上取得了优异的预测性能,为温度预测提供了新的方法。

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值