✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
本文提出了一种基于能量谷算法优化多头注意力机制的卷积神经网络结合长短记忆神经网络(EVO-CNN-BiLSTM-Multihead-Attention)的温度预测模型。该模型将能量谷算法应用于多头注意力机制中,通过优化注意力权重矩阵,增强模型对温度序列特征的提取能力。同时,该模型结合了卷积神经网络和长短记忆神经网络,充分利用了温度序列的时空特征。实验结果表明,该模型在多个温度数据集上取得了优异的预测性能,有效提高了温度预测的准确性。
1. 引言
温度预测在气象学、农业和工业等领域具有重要的应用价值。近年来,深度学习技术在时间序列预测领域取得了显著的进展,为温度预测提供了新的方法。
2. 方法
2.1 能量谷算法优化多头注意力机制
多头注意力机制是一种强大的注意力机制,能够同时关注序列中不同位置的信息。然而,传统的注意力机制权重矩阵的计算方式存在一定局限性,无法充分挖掘温度序列中的关键特征。
能量谷算法是一种基于能量函数的优化算法,具有良好的全局搜索能力。本文将能量谷算法应用于多头注意力机制中,优化注意力权重矩阵。具体来说,将注意力权重矩阵的计算公式转换为能量函数,并使用能量谷算法求解最优解。通过优化注意力权重矩阵,增强了模型对温度序列特征的提取能力。
2.2 EVO-CNN-BiLSTM-Multihead-Attention 模型
该模型由能量谷算法优化多头注意力机制、卷积神经网络和长短记忆神经网络组成。卷积神经网络能够提取温度序列的局部特征,长短记忆神经网络能够学习温度序列的长期依赖关系。
模型的结构如下:
-
输入层:接收温度序列数据。
-
卷积层:提取温度序列的局部特征。
-
多头注意力层:使用能量谷算法优化后的多头注意力机制,提取温度序列的关键特征。
-
双向长短记忆层:学习温度序列的长期依赖关系。
-
全连接层:输出温度预测结果。
📣 部分代码
%% 初始化
clear
close all
clc
warning off
%输入输出数据
input=data(:,1:end-1); %data的第一列-倒数第二列为特征指标
output=data(:,end); %data的最后面一列为输出的指标值
N=length(output); %全部样本数目
testNum=15; %设定测试样本数目
trainNum=N-testNum; %计算训练样本数目
%% 划分训练集、测试集
input_train = input(1:trainNum,:)';
output_train =output(1:trainNum)';
input_test =input(trainNum+1:trainNum+testNum,:)';
output_test =output(trainNum+1:trainNum+testNum)';
%% 数据归一化
[inputn,inputps]=mapminmax(input_train,0,1);
[outputn,outputps]=mapminmax(output_train);
inputn_test=mapminmax('apply',input_test,inputps);
%% 获取输入层节点、输出层节点个数
⛳️ 运行结果
3. 实验
3.1 数据集
使用三个温度数据集进行实验:
-
气象数据集:包含逐小时气温数据。
-
农业数据集:包含逐日农作物温度数据。
-
工业数据集:包含逐时工业设备温度数据。
3.2 评价指标
使用均方根误差(RMSE)和平均绝对误差(MAE)作为评价指标。
3.3 实验结果
实验结果表明,EVO-CNN-BiLSTM-Multihead-Attention 模型在三个数据集上均取得了优异的预测性能。与其他基准模型相比,该模型的 RMSE 和 MAE 均显著降低。
4. 结论
本文提出的 EVO-CNN-BiLSTM-Multihead-Attention 模型将能量谷算法优化多头注意力机制应用于温度预测,有效提高了模型对温度序列特征的提取能力。结合卷积神经网络和长短记忆神经网络,该模型充分利用了温度序列的时空特征。实验结果表明,该模型在多个温度数据集上取得了优异的预测性能,为温度预测提供了新的方法。
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类