【LSTM回归预测】基于斑马算法优化卷积神经网络结合注意力机制的长短记忆网络ZOA-CNN-LSTM-Attention实现风电功率多输入单输出回归预测附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

摘要

风电功率预测是风电场安全稳定运行的关键技术之一。本文提出了一种基于斑马算法优化卷积神经网络结合注意力机制的长短记忆网络(ZOA-CNN-LSTM-Attention)的风电功率多输入单输出回归预测模型。该模型利用卷积神经网络提取风电功率序列的时间局部特征,并使用长短记忆网络学习序列的长期依赖关系。此外,注意力机制被引入到模型中,以增强模型对重要特征的关注。斑马算法用于优化模型超参数,以提高预测精度。实验结果表明,所提出的模型在风电功率预测任务上表现出优异的性能,优于其他基准模型。

1. 引言

风电作为一种可再生能源,因其清洁、环保和可持续性而受到广泛关注。然而,风电功率具有间歇性和波动性,给电网稳定运行带来挑战。因此,准确的风电功率预测对于风电场的安全稳定运行至关重要。

传统的风电功率预测方法主要基于统计模型和物理模型。统计模型通过对历史数据进行统计分析来预测风电功率,而物理模型则基于风电场的气象条件和风机特性进行预测。然而,这些方法在处理风电功率序列的非线性、非平稳性和高维性方面存在局限性。

近年来,深度学习技术在风电功率预测领域得到了广泛应用。深度学习模型能够自动从数据中学习复杂特征,并对非线性数据进行建模。

2. ZOA-CNN-LSTM-Attention模型

所提出的ZOA-CNN-LSTM-Attention模型由以下几个模块组成:

  • **卷积神经网络(CNN):**CNN用于提取风电功率序列的时间局部特征。CNN由多个卷积层和池化层组成。卷积层使用卷积核对输入数据进行卷积操作,提取局部特征。池化层对卷积层的输出进行下采样,减少特征维度。

  • **长短记忆网络(LSTM):**LSTM是一种循环神经网络,能够学习序列的长期依赖关系。LSTM由输入门、遗忘门和输出门组成。输入门控制新信息的输入,遗忘门控制旧信息的遗忘,输出门控制输出信息的生成。

  • **注意力机制:**注意力机制用于增强模型对重要特征的关注。注意力机制通过计算特征权重,对特征进行加权求和,得到一个加权特征向量。加权特征向量中权重较大的特征表示模型更关注的特征。

  • **斑马算法(ZOA):**斑马算法是一种基于斑马群体行为的优化算法。ZOA算法通过模拟斑马群体觅食、警戒和社交行为,优化模型超参数。

📣 部分代码

function modulator = getModulator(modType, sps, fs)%getModulator Modulation function selector%   MOD = getModulator(TYPE,SPS,FS) returns the modulator function handle%   MOD based on TYPE. SPS is the number of samples per symbol and FS is%   the sample rate.switch modType  case "BPSK"    modulator = @(x)bpskModulator(x,sps);  case "QPSK"    modulator = @(x)qpskModulator(x,sps);  case "8PSK"    modulator = @(x)psk8Modulator(x,sps);  case "16QAM"    modulator = @(x)qam16Modulator(x,sps);  case "64QAM"    modulator = @(x)qam64Modulator(x,sps);  case "GFSK"    modulator = @(x)gfskModulator(x,sps);  case "CPFSK"    modulator = @(x)cpfskModulator(x,sps);  case "PAM4"    modulator = @(x)pam4Modulator(x,sps);  case "B-FM"    modulator = @(x)bfmModulator(x, fs);  case "DSB-AM"    modulator = @(x)dsbamModulator(x, fs);  case "SSB-AM"    modulator = @(x)ssbamModulator(x, fs);endendfunction src = getSource(modType, sps, spf, fs)%getSource Source selector for modulation types%    SRC = getSource(TYPE,SPS,SPF,FS) returns the data source%    for the modulation type TYPE, with the number of samples%    per symbol SPS, the number of samples per frame SPF, and%    the sampling frequency FS.switch modType  case {"BPSK","GFSK","CPFSK"}    M = 2;    src = @()randi([0 M-1],spf/sps,1);  case {"QPSK","PAM4"}    M = 4;    src = @()randi([0 M-1],spf/sps,1);  case "8PSK"    M = 8;    src = @()randi([0 M-1],spf/sps,1);  case "16QAM"    M = 16;    src = @()randi([0 M-1],spf/sps,1);  case "64QAM"    M = 64;    src = @()randi([0 M-1],spf/sps,1);  case {"B-FM","DSB-AM","SSB-AM"}    src = @()getAudio(spf,fs);endend

⛳️ 运行结果

3. 实验结果

本文使用真实的风电功率数据集对所提出的模型进行了评估。实验结果表明,ZOA-CNN-LSTM-Attention模型在预测精度和鲁棒性方面均优于其他基准模型。

4. 结论

本文提出了一种基于斑马算法优化卷积神经网络结合注意力机制的长短记忆网络(ZOA-CNN-LSTM-Attention)的风电功率多输入单输出回归预测模型。该模型利用CNN提取时间局部特征,LSTM学习长期依赖关系,注意力机制增强对重要特征的关注,ZOA算法优化模型超参数。实验结果表明,所提出的模型在风电功率预测任务上表现出优异的性能,为风电场安全稳定运行提供了有力支撑。

🔗 参考文献

[1] 魏健,赵红涛,刘敦楠,等.基于注意力机制的CNN-LSTM短期电力负荷预测方法[J].华北电力大学学报:自然科学版, 2021, 48(1):6.DOI:10.3969/j.ISSN.1007-2691.2021.01.05.

[2] 程艳,张波,姚中原,等.基于DAM与CNN-LSTM-XGBoost的海上风电功率并行预测[J].软件导刊, 2023, 22(7):27-31.

[3] 李远博,王海瑞,叶鑫,et al.基于并行CNN-Self attention&LSTM的锂电池RUL间接预测[J].化工自动化及仪表, 2023, 50(4):486-492.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 27
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 使用卷积神经网络-长短记忆网络(bi-lstm)-注意力机制对股票收盘价进行回归预测是一种基于深度学习的方法。该方法主要通过多层卷积神经网络提取输入数据的特征,并使用双向的长短记忆网络来学习数据的时序信息,并通过注意力机制来自动选择对预测结果具有重要贡献的部分。 首先,卷积神经网络可以有效提取输入数据的空间特征,这对于股票收盘价预测来说很关键,因为股票市场的价格变化通常具有一定的空间相关性。通过多层卷积网络的前向传播和反向传播过程,模型可以从原始数据中提取出具有预测意义的低维特征表示。 其次,双向的长短记忆网络可以帮助我们学习到时序信息。在股票市场中,过去一段时间的价格变动通常能够为未来提供一定的指引。LSTM网络在处理时序数据时具有优势,能够自动学习到长期依赖关系。通过双向LSTM网络结构,我们可以同时考虑历史信息和未来信息,更好地捕捉到股票价格的动态变化。 最后,注意力机制被引入用于选择对预测结果贡献最重要的部分。在股票市场中,不同的特征可能对价格的预测具有不同的重要性。通过引入注意力机制,我们可以自动学习到不同时间点或特征在预测中的贡献程度,并将更多的关注点放在对预测结果具有更大影响的部分上。 综上所述,使用卷积神经网络-长短记忆网络(bi-lstm)-注意力机制对股票收盘价进行回归预测是一种较为有效的方法。该方法可以利用卷积网络提取空间特征,LSTM网络学习时序信息,并通过注意力机制选择重要特征,从而提高对股票收盘价的预测准确性。这种方法不仅可以应用于股票市场,还可以扩展到其他时序预测问题中。 ### 回答2: 在对股票收盘价进行回归预测时,可以采用卷积神经网络(Convolutional Neural Network, CNN)结合长短记忆网络(Bidirectional Long Short-Term Memory, bi-LSTM)和注意力机制的方法。 首先,通过卷积神经网络对股票数据进行特征提取。卷积层可以提取出时间序列数据中的局部模式和趋势,并且具有平移不变性,能够保留数据的空间结构信息。卷积层的输出经过池化操作,进一步减少参数数量,并提取出更加重要的特征。 接下来,通过双向LSTM模型对经过卷积特征提取的序列数据进行处理。LSTM模型可以捕捉到序列数据中的长期依赖关系,并能够记忆之前的状态,相比传统的循环神经网络效果更好。通过双向LSTM,可以同时考虑到当前数据点前后的信息,提升模型对时间序列数据的理解能力。 最后,引入注意力机制来加权模型对各个时间步的关注程度。注意力机制可以根据每个时间步的重要性,给予不同的权重。对于股票收盘价的回归预测,模型可以更加关注重要的时间步,提高预测的准确性。 整个模型的训练过程包括特征提取、双向LSTM注意力机制的训练。在训练过程中,可以采用均方误差(Mean Squared Error, MSE)作为损失函数,通过梯度下降算法进行参数优化。 最后,在进行股票收盘价的预测时,可以将历史数据输入到模型中,根据模型输出的预测结果进行回归预测。通过不断的迭代优化,可以提高模型对股票收盘价的准确预测能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值