【脑电信号】基于matlab模拟癫痫神经元动作电位

本文介绍了Matlab在科研中的应用,特别是针对癫痫神经元动作电位的分析,探讨了其在癫痫发作中的关键作用以及异常情况,如持续性去极化和爆发性放电。文章还讨论了癫痫的治疗方法,包括药物、手术和神经刺激疗法。通过理解这些电生理机制,有望开发出更有效的癫痫管理方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

癫痫是一种神经系统疾病,其特征是反复发作的癫痫发作。癫痫发作是由大脑中神经元的异常电活动引起的。神经元动作电位是神经元电活动的基本单位,在癫痫发作的发生中起着至关重要的作用。

神经元动作电位

神经元动作电位是一种快速、全或无的电脉冲,沿着神经元的轴突传播。它是由神经元膜上的离子通道的打开和关闭引起的。

动作电位有以下几个阶段:

  • **静息电位:**在静息状态下,神经元膜内侧为负电,外侧为正电。

  • **去极化:**当神经元受到刺激时,钠离子通道打开,钠离子流入细胞,导致膜电位变得不那么负电。

  • **动作电位:**当膜电位达到阈值时,钠离子通道完全打开,钠离子大量涌入细胞,导致膜电位迅速反转。

  • **超极化:**钠离子通道关闭后,钾离子通道打开,钾离子流出细胞,导致膜电位变得比静息电位更负电。

  • **折返极化:**钾离子通道关闭后,膜电位逐渐恢复到静息电位。

癫痫神经元动作电位

在癫痫神经元中,动作电位发生异常,导致癫痫发作。这些异常包括:

  • **持续性去极化:**癫痫神经元可以持续去极化,导致反复的动作电位。

  • **爆发性放电:**癫痫神经元可以突然释放一系列动作电位。

  • **后放电:**癫痫神经元在动作电位后可以产生额外的动作电位。

癫痫发作的机制

癫痫发作是由大脑中神经元的同步异常放电引起的。这些异常放电可以导致大脑功能的暂时性中断,从而产生癫痫发作的症状,如意识丧失、抽搐和感觉异常。

治疗

癫痫的治疗旨在控制癫痫发作。治疗方法包括:

  • **药物:**抗癫痫药物可以阻断癫痫神经元的异常放电。

  • **手术:**在某些情况下,可以切除引起癫痫发作的大脑区域。

  • **神经刺激:**迷走神经刺激和深部脑刺激等神经刺激疗法可以帮助控制癫痫发作。

结论

癫痫神经元动作电位异常是癫痫发作发生的关键因素。了解这些异常对于癫痫的诊断和治疗至关重要。通过持续的研究,我们有望开发出更有效的癫痫治疗方法。的治疗重点是控制癫痫发作。治疗方案可能包括药物、手术和神经刺激疗法。抗癫痫药物可以调节离子通道功能、神经递质释放和突触可塑性,以减少神经元过度兴奋和癫痫发作。

结论

癫痫神经元动作电位异常是癫痫发作的电生理基础。这些异常可能由离子通道功能异常、神经递质释放异常和突触可塑性改变引起。了解癫痫神经元动作电位的机制对于开发新的治疗方法至关重要,这些方法可以有效控制癫痫发作并改善患者的生活质量。

📣 部分代码

axonmain();function [t,x]=axonmain()global P % parameterssetUp;[t,x]=ode15s(@Dyn,P.tD,P.Xo);plotResults(t,x); % axonend% dynamic functionfunction Dx=Dyn(t,x)% setProcess: Establish G matrix & other values for the process%Set the drive matrix as wellglobal P                                                    % param&I-stimN=length(x)/4; G=zeros(N); f=zeros(N,1);                    % numberOnodesV=x(1:N);m=x(N+1:2*N);h=x(2*N+1:3*N);n=x(3*N+1:4*N);        % extractStatesfor i=1:N                                                   % loop eachNode  ga=P.xSectArea(i)/((P.Ra*P.dx(i)));                       % axon conduct  gL=P.surfArea(i)/(P.RL);                                  % chloride/leak  gNaMax=P.gMax_Na*P.surfArea(i)*P.isActive(i);             % Na maxConduct  gKMax =P.gMax_K *P.surfArea(i)*P.isActive(i);             % K maxConduct  C=P.C*P.surfArea(i);                                      % capacitance-F  gNa=m(i)^3*h(i)*gNaMax;                                   % conductWgates  gK =n(i)^4*gKMax;                                         % conductWgates  a = 0.8e-4;  Rout = 24e4;  gout = 1/(Rout/P.xSectArea(i));  SUMgChan=gNa+gK+gL;                                       % sum memb g's  f(i)=(gNa*P.ENa)+(gK*P.EK)+(gL*P.ECl);                    % sum drive  if N==1      G = -SUMgCHan;      f = f+interp1(P.Io(:,1),P.Io(:,2),t);else      if i == 1         G(1, 1) = - ga - SUMgChan ;         G(1, 2) = ga;         f(1) = f(1)+interp1(P.Io(:,1),P.Io(:,2),t);      elseif i == N          G(N,N) = -(SUMgChan+ga);          G(N,N-1)= ga;      else          G(i,i) = -(2*ga+SUMgChan);          G(i,i-1) = ga;          G(i,i+1) = ga;      end  end  end                                                        % endForEachNodDV=(G*V+f)./C;                                              % curentBalance[mA,nA,hA,mB,nB,hB]=getRates(V,P.Vrest);                    % alpha & betasrn = randi(3,i,1);if (rn(i)==2)    nB = 0;endDm=(-(mA+mB).*m+mA);Dh=(-(hA+hB).*h+hA);Dn=(-(nA+nB).*n+nA);% gates probsDx=[DV;Dm;Dh;Dn];                                           % asembleStatesset(P.h,'yData',V);title(num2str(t));drawnow;               % updateAnims                                                 % process varsend% setUp : intialize variablesfunction P=setUp(P)% messagesclose all;                                                   % clearfprintf('No Branching Axon');    % announce% setup variablesglobal PP.tMax=0.004;                                   % simu time secP.tD=0:P.tMax/100:P.tMax;                       % desired output time stepsP.Vrest = -60e-3;                               % rest voltageP.C = 1e-6;                                     % bulk capcitance F/cm^2P.RL = 15e3;                                    % bulk Cl Resist Ohms*cm^2P.Ra = 3e3;                                     % bulk axon resist ohms*cm -changeBak2 3e3P.gMax_K  = 60e-3;                              % bulk K conductance S/cm^2P.gMax_Na = 120e-3;                             % bulk Na conduct. S/cm^2P.ENa =  55e-3;                                 % Nernst poten. Na voltsP.EK  = -75e-3;                                 % Nernst poten. K  voltsP.ECl = -40e-3;                                % Nernst poten. Cl volts -changeBak2 -403e-3P.N=10;                                         % # compartments/nodes/SectP.L=.007;                                       % overall length (cm)% VECTOR for EACH:Z=ones(P.N,1); z=zeros(P.N,1);                  % utility vectors 1's & 0'sP.dx=Z*(P.L/P.N);                               % subsection length (cm)P.a=Z*3e-5;                                     % radii of all nodes (cm)P.surfArea=2*pi.*P.a.*P.dx;                     % cm^2 -VECTOR for EACHP.xSectArea=pi.*P.a.^2;                         % cm^2 -VECTOR for EACHP.isActive=Z;                                   % 1 if active node, else 0% initial conditionsVo=P.Vrest*Z; mo=0.06915; ho=0.5142; no=0.3534; % initial gate probabilityP.Xo=[Vo;mo*Z;ho*Z;no*Z];                       % stack initial states ->Xo% Injected current pulse (Istim = Io):I=1e-10; t1=1e-4; dur=1e-4; t2=t1+dur; miu=1e-9;% pulse start & length timeP.Io= [0 t1-miu  t1  t2  t2+miu   2*P.tMax; ... % assemble time and      [0 0       1   1   0         0]*I]';      % current mag (pico=E-12)setUpPlots(100,'Axon with 35 Nodes');  % Seup plots ahead of simend% setup figures & animationfunction setUpPlots(figNum,titleText)global PS=get(0,'ScreenSize');                                  % ask 4 screen sizeif ~exist('figNum','var'), figure,                      % if fig# not inputelse figure(figNum); endVo=P.Xo(1:P.N);mo=P.Xo(P.N+1:2*P.N);                    % extractInitStatesho=P.Xo(2*P.N+1:3*P.N);no=P.Xo(3*P.N+1:4*P.N);          % extractInitStates% place summary figure on screen:set(gcf,'name',titleText)                               % window titleset(gcf,'Position',[.68*S(3) 0 .3*S(3) .9*S(4)]);       % put figure% setup Stim (Io) windowsubplot(4,1,1);plot(P.Io(:,1),P.Io(:,2),'.-','linewidth',2);           % plot Iohold on; xlim([0 P.tMax]);xlabel('Sec'); ylabel('Amp'); title('Io');% setup volt vs node windowsubplot(4,1,2);P.h=plot(1:P.N,P.Xo(1:P.N),'.-','markersize',12);       % P.h points 2 plothold on; xlabel('Node #'); ylabel('Volts');             %set(gca,'ytick',[-.3 -.2 -.1 P.Vrest -.025 0 .1 ]);     %ylim(.15*[-1 1]);                                       %% setup gates vs time windowsubplot(4,1,3);plot(0,mo,'b.-',0,ho,'g.-',0,no,'r.-'); hold on;        % all gatesxlabel('sec');ylabel('Prob.');ylim([0 1]);xlim([0 P.tMax])%text(0,.96,'  m','fontsize',6,'fontweight','bold','color','b')text(0,.90,'  h','fontsize',6,'fontweight','bold','color','g')text(0,.84,'  n','fontsize',6,'fontweight','bold','color','r')% setup 3d figure windowsubplot(4,1,4);plot3(zeros(P.N,1),1:P.N,Vo,'.-','markersize',7);       %ylabel('Node #'); xlabel('time(s)'); zlabel('Volts');   %set(gca,'ztick',[-.3 -.2 -.1 P.Vrest -.025 0 .1 ]);     % displaygrid on; xlim([0 P.tMax]); zlim(.15*[-1 1]); hold on;   %% shrink fonts and turn off box on all:for i=1:4,  subplot(4,1,i);  set(gca,'box','off','fontsize',5);endsubplot(4,1,2);fprintf('...Plots & variables set up...Simulating...');drawnow;endfunction [alpha_m,alpha_n,alpha_h,beta_m,beta_n,beta_h]=getRates(Vm,Vm_rest,plotIt)V = Vm-Vm_rest; V=V*1e3;                              % convert2 millivolts%% rates:%Input Rate Equation Functions Herealpha_n = 0.01*((-V+10)./(exp((-V+10)/10)-1))*1000;beta_n = 0.125*exp(-V/80)*1000;alpha_m = 0.1*((-V+25)./(exp((-V+25)/10)-1))*1000;beta_m = 4*exp(-V/18)*1000;alpha_h = 0.07*exp(-V/20)*1000;beta_h = 1./(exp((-V+30)/10)+1)*1000;%% fix near singularities:if(abs(V-25)<1e-2), alpha_m=1*1e3;   end;             % @ v=25if(abs(V-10)<1e-2), alpha_n=0.1*1e3; end;             % @ v=10%% plot if asked:if exist('plotIt','var')                              % PLOT if variable in  plot(Vm,alpha_m,'b.:',Vm,beta_m,'b.-', ...       Vm,alpha_n,'g.:',Vm,beta_n,'g.-', ...       Vm,alpha_h,'r.:',Vm,beta_h,'r.-')  text(0,800,'m','fontsize',8,'fontweight','bold','color','b')  text(0,800,'      h','fontsize',8,'fontweight','bold','color','r')  text(0,800,'          n','fontsize',8,'fontweight','bold','color','g')  title('Hodgekin and Huxley Gate Kinetic Rates');  ylabel('(1/sec)'); xlabel('Volts')endend% plotResults function: wrap up by ploting final resultsfunction plotResults(t,x);global P;% get variablesN=size(x,2)/4; nt=size(x,1); v1=ones(nt,1);                 % #S time,nodesV=x(:,1:N);m=x(:,N+1:2*N);h=x(:,2*N+1:3*N);n=x(:,3*N+1:4*N);% extractStates% V,m,h,n% make plots subplot(4,1,2); ;                           % volt VS node plot(1:N,V);                              % prob VS time subplot(4,1,3);                            % 3D plot t,N,V plot(t,m,'-b',t,h,'-g',t,n,'-r') subplot(4,1,4); for i= 1:N     plot3(t,i*v1,x(:,i)) endaxis autosound(sin(1:1000),1e4);               % annouyingBeepend​

⛳️ 运行结果

🔗 参考文献

[1]师黎,牛晓可,万红.基于动作电位脑电信号的预处理技术研究[J].  2012.

🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值