✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
本文介绍了模拟和数字信号调制技术,包括ASK、FSK、PSK和QAM,以及用于分析调制信号的各种信号处理技术,包括自相关法、周期图、小波分解和过零检测法。这些技术对于理解调制信号的特性、提取有用信息和识别不同类型的调制方案至关重要。
引言
调制是将信息信号(如音频或视频)转换为适合通过通信信道传输的信号的过程。调制技术有多种,每种技术都有其独特的优势和劣势。模拟调制和数字调制是两大主要调制类别。
模拟调制
模拟调制技术使用连续的信号来表示信息信号。最常见的模拟调制方案包括:
-
幅度调制(ASK):改变载波信号的幅度以表示信息信号。
-
频率调制(FSK):改变载波信号的频率以表示信息信号。
-
相位调制(PSK):改变载波信号的相位以表示信息信号。
数字调制
数字调制技术使用离散的信号来表示信息信号。最常见的数字调制方案包括:
-
正交振幅调制(QAM):使用正交载波信号的幅度和相位来表示信息信号。
-
正交频分复用(OFDM):将信息信号分配到多个正交载波上。
信号分析技术
为了分析调制信号,可以使用各种信号处理技术,包括:
-
自相关法:用于估计信号的功率谱。
-
周期图:用于计算信号的功率谱。
-
小波分解:用于分析信号的时频特性。
-
过零检测法:用于识别调制方案。
自相关法
自相关法是一种估计信号功率谱的方法。它通过计算信号与自身延迟版本的相关性来实现。自相关函数的峰值对应于信号中不同频率分量的功率。
周期图
周期图是一种计算信号功率谱的方法。它通过将信号分解成一系列正弦波并计算每个正弦波的功率来实现。周期图提供信号中不同频率分量的功率的更准确估计。
小波分解
小波分解是一种分析信号时频特性的方法。它通过将信号分解成一系列小波函数来实现。小波函数是具有局部化时频特性的函数。
过零检测法
过零检测法是一种识别调制方案的方法。它通过计算信号中过零点的数量来实现。不同类型的调制方案具有不同的过零点数量。
应用
这些信号分析技术在通信系统中有着广泛的应用,包括:
-
调制方案识别
-
功率谱估计
-
时频分析
-
信号分类
结论
模拟和数字调制技术对于现代通信系统至关重要。自相关法、周期图、小波分解和过零检测法等信号分析技术对于理解调制信号的特性、提取有用信息和识别不同类型的调制方案至关重要。这些技术在通信系统设计、信号处理和数据分析中有着广泛的应用。
📣 部分代码
function y=pqmod(M,N,flag,fs,R)
%本程序完成基带信号星座图映射
%参数说明
% y 生成的基带调制行向量
% M 调制阶数
% N 码元个数
% fs 采样速率
% R 符号速率
% flag flag=1 PSK调制
% flag=2 QAM调制
% flag=3 OQPSK调制
%函数体
x=randint(N,1,M);
if flag==1
y=pskmod(x,M);
% scatterplot(y);
elseif flag==2
y=qammod(x,M);
% scatterplot(y)
elseif flag==3
M=4;
y=oqpskmod(x);
y=y(2:end-1);
% scatterplot(y)
end;
delay=3;
y=rcosflt(y,R,fs);%升余弦脉冲成型
%去掉延迟部分
y=y(fs*delay/R+1:end-fs*delay/R);
% y=rectpulse(y,fs/R);
⛳️ 运行结果
🔗 参考文献
[1]林晓东.智能固话终端中的数字信号编解码器的设计与实现[D].电子科技大学,2012.DOI:CNKI:CDMD:2.1012.296458.
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类