✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
本文基于 MATLAB 平台,模拟了窄带白噪声 PD 雷达系统,并针对其灵巧噪声干扰进行了研究。通过建立雷达方程和干扰模型,仿真了雷达在有干扰条件下的目标检测和跟踪性能。本文分析了干扰功率、带宽和时变特性对雷达性能的影响,并提出了相应的抗干扰对策。
雷达方程
窄带白噪声 PD 雷达方程为:
P_d = \frac{P_t G^2 \lambda^2 \sigma}{(4\pi)^3 R^4 (N_0 + N_i)}
其中:
-
P_d
为目标检测概率 -
P_t
为雷达发射功率 -
G
为雷达天线增益 -
\lambda
为雷达波长 -
\sigma
为目标雷达散射截面积 -
R
为目标距离 -
N_0
为热噪声功率谱密度 -
N_i
为干扰功率谱密度
干扰模型
灵巧噪声干扰是一种时变干扰,其功率、带宽和频率会随着时间而变化。本文采用以下模型模拟灵巧噪声干扰:
N_i(t) = N_{i0} \exp(-(t - t_0)^2 / 2\sigma_t^2) \cos(2\pi f_i t + \phi_i)
其中:
-
N_{i0}
为干扰峰值功率谱密度 -
t_0
为干扰起始时间 -
\sigma_t
为干扰时间常数 -
f_i
为干扰中心频率 -
\phi_i
为干扰初始相位
仿真结果
本文使用 MATLAB 仿真了雷达在有灵巧噪声干扰条件下的目标检测和跟踪性能。仿真参数如下:
-
雷达发射功率:100 W
-
天线增益:30 dB
-
波长:3 cm
-
目标雷达散射截面积:1 m^2
-
目标距离:10 km
-
热噪声功率谱密度:-174 dBm/Hz
-
干扰峰值功率谱密度:-100 dBm/Hz
-
干扰时间常数:1 ms
-
干扰中心频率:100 MHz
-
干扰带宽:10 MHz
仿真结果表明,灵巧噪声干扰对雷达目标检测和跟踪性能有显著影响。干扰功率、带宽和时变特性都会降低雷达的检测概率和跟踪精度。
抗干扰对策
针对灵巧噪声干扰,本文提出了以下抗干扰对策:
-
**功率控制:**降低干扰功率谱密度,减小干扰对雷达的影响。
-
**带宽限制:**限制干扰带宽,减小干扰对雷达接收信号的影响。
-
**时变特性补偿:**通过自适应滤波或其他算法,补偿干扰的时变特性。
-
**多普勒滤波:**利用多普勒效应,区分目标信号和干扰信号。
-
**空时自适应处理:**利用空时自适应算法,抑制干扰信号。
结论
本文基于 MATLAB 模拟了窄带白噪声 PD 雷达灵巧噪声干扰,分析了干扰对雷达性能的影响,并提出了相应的抗干扰对策。仿真结果表明,抗干扰对策可以有效提高雷达在有干扰条件下的目标检测和跟踪性能。差](image.png)
结论
本文提出了一种基于MATLAB模拟窄带白噪声PD雷达灵巧噪声干扰的方法。该方法采用时频分析技术和自适应滤波算法,可以有效地干扰PD雷达系统的目标检测性能。仿真结果表明,所提出的方法可以有效地干扰雷达信号,降低雷达系统的SNR,从而影响目标的检测性能。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类