✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
非正交多址接入 (NOMA) 作为一种新兴的多址接入技术,近年来受到广泛关注。与传统的正交多址接入 (OMA) 技术相比,NOMA 能够在同一时频资源上同时服务多个用户,从而提高系统容量和频谱效率。NOMA 系统中,用户信号在发送端进行叠加,并在接收端通过串行干扰消除 (SIC) 技术进行分离。
一层网络是 NOMA 系统的一种重要应用场景,其中基站直接与用户设备 (UE) 通信。在 NOMA 一层网络中,子信道和功率分配是两个关键问题,它们直接影响着系统的性能。本文将基于蒙特卡洛模拟方法,研究 NOMA 一层网络中的子信道和功率分配问题,并分析其对系统性能的影响。
系统模型
考虑一个单小区 NOMA 一层网络,其中一个基站 (BS) 为 �K 个用户设备 (UE) 提供服务。假设每个 UE 都有一个独立的信道,并且信道状态信息 (CSI) 是完美的。
子信道分配
在 NOMA 系统中,每个 UE 可以被分配到多个子信道。子信道分配的目标是最大化系统容量或最小化系统延迟。本文采用基于贪婪算法的子信道分配策略,该策略将每个 UE 分配到其信道增益最大的子信道。
功率分配
功率分配是 NOMA 系统中另一个重要问题。功率分配的目标是最大化系统容量或最小化系统能量消耗。本文采用基于功率控制的功率分配策略,该策略根据用户的信道增益和干扰水平来分配功率。
蒙特卡洛模拟
为了评估 NOMA 一层网络的性能,本文采用蒙特卡洛模拟方法。蒙特卡洛模拟是一种随机模拟方法,它通过多次随机抽样来估计系统性能指标。在模拟过程中,我们首先随机生成用户的信道增益,然后根据子信道分配和功率分配策略进行系统仿真。
性能指标
本文采用以下性能指标来评估 NOMA 一层网络的性能:
-
系统容量: 所有用户的总吞吐量。
-
平均用户速率: 所有用户的平均吞吐量。
-
能量效率: 系统容量与总功率消耗的比值。
仿真结果
仿真结果表明,NOMA 系统的性能优于 OMA 系统,尤其是在用户数量较多或信道条件较差的情况下。此外,子信道分配和功率分配策略对 NOMA 系统的性能有显著影响。
结论
本文基于蒙特卡洛模拟方法,研究了 NOMA 一层网络中的子信道和功率分配问题。仿真结果表明,NOMA 系统的性能优于 OMA 系统,子信道分配和功率分配策略对 NOMA 系统的性能有显著影响。未来的研究方向包括:
-
研究更复杂的子信道分配和功率分配策略。
-
考虑信道状态信息不完美的情况。
-
将 NOMA 技术应用到其他通信场景,例如多小区网络和移动边缘计算。
⛳️ 运行结果
🔗 参考文献
[1] 吕雨桐.5G通信网络中基于BAT算法的NOMA系统功率分配方法[J].中国新通信, 2022, 24(2):2.
[2] 陶静,朱琦.基于NOMA的D2D通信联合子信道与功率分配算法[J].南京邮电大学学报:自然科学版, 2018.DOI:CNKI:SUN:NJYD.0.2018-03-007.
[3] 陶静,朱琦.基于NOMA的D2D通信联合子信道与功率分配算法[J].南京邮电大学学报:自然科学版, 2018, 38(3):8.DOI:10.14132/j.cnki.1673-5439.2018.03.006.
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类