✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
该代码用于计算子弹稳定性理论的基本版本。这意味着子弹的水平速度和转速在飞行过程中保持恒定。
伪模拟代码
该代码用于模拟子弹在飞行过程中的运动。代码根据线性化理论调整子弹的速度,并在每次迭代时根据马赫数计算气动系数。
通过激活 "flags.RollDamp" 标志,可以模拟飞行过程中转速的变化。
主要代码基于线性化理论,计算子弹的稳定性。该理论假设子弹的水平速度和转速在飞行过程中保持恒定,并使用线性方程描述子弹的运动。
代码首先定义了子弹的初始条件,包括质量、直径、弹道系数、转速等。然后,代码计算子弹的稳定性参数,例如旋转稳定系数。最后,代码计算子弹的稳定性裕度,以确定子弹是否稳定。
伪模拟代码
伪模拟代码通过迭代的方式模拟子弹在飞行过程中的运动。在每次迭代中,代码根据线性化理论更新子弹的速度和方向,并根据马赫数计算气动系数。
该代码还考虑了空气阻力、重力和其他外力的影响。
转速变化:可以通过设置 "flags.RollDamp" 标志来模拟飞行过程中转速的变化。当该标志为真时,代码将考虑转速衰减的影响,并模拟转速随时间的变化。
代码应用
该代码可用于分析各种子弹和弹丸的稳定性,并预测其在飞行过程中的行为。这对于设计和优化武器系统、弹丸和导弹至关重要。
此外,该代码还可以用于模拟各种环境因素的影响,例如风速、空气密度和温度等,从而更准确地预测子弹的飞行轨迹。
结论
本文介绍了用于分析子弹稳定性的代码,该代码基于线性化理论,能够模拟子弹的飞行运动并预测其稳定性。该代码可用于设计和优化武器系统,并预测子弹在飞行过程中的行为。未来,可以进一步扩展该代码,使其能够模拟更多因素的影响,并提供更精准的分析结果。
⛳️ 运行结果
正在上传…重新上传取消
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类