✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
数字水印技术作为一种有效的版权保护手段,在多媒体信息安全领域扮演着至关重要的角色。本文针对图像隐藏技术,提出了一种基于奇异值分解(SVD)的数字水印嵌入和提取方法,并利用相关系数(NC)作为水印质量评估指标。SVD分解将图像分解为奇异值矩阵、左奇异矩阵和右奇异矩阵,通过对奇异值矩阵进行嵌入操作,进而实现水印的隐藏和提取。该方法具有较好的隐蔽性和鲁棒性,能够在一定程度上抵抗常见的图像攻击。
1. 引言
数字水印技术是指将特定的信息嵌入到多媒体数据中,用于标识数据来源、验证数据完整性或隐藏秘密信息。近年来,数字水印技术得到了广泛的应用,如版权保护、内容认证、信息隐藏等。其中,图像隐藏技术作为数字水印技术的重要分支,旨在将秘密信息嵌入到图像中,使其不易察觉,并可在信息提取时进行识别和验证。
传统的图像隐藏方法主要包括基于空间域的LSB替换和基于变换域的DCT、DWT等方法。然而,这些方法在抵抗攻击方面存在一定的局限性。例如,LSB替换方法易受噪声攻击,而DCT和DWT方法则容易受到压缩攻击。
奇异值分解(SVD)是一种强大的矩阵分解技术,它可以将矩阵分解为三个矩阵的乘积。SVD在信号处理、图像压缩和机器学习等领域有着广泛的应用。近年来,SVD也被应用于数字水印技术,并取得了良好的效果。
2. 基于SVD的数字水印嵌入与提取
2.1 SVD分解
SVD分解是指将一个矩阵分解成三个矩阵的乘积:
2.2 水印嵌入
水印嵌入过程如下:
-
将待嵌入的二值水印信息转换为向量形式,并进行长度扩展。
-
对原始图像进行SVD分解,得到奇异值矩阵ΣΣ。
-
将水印信息嵌入到ΣΣ矩阵中。嵌入方式可以采用简单的替换、叠加或其他更复杂的算法。
-
将嵌入后的ΣΣ矩阵与�U和��VT相乘,得到嵌入水印后的图像。
2.3 水印提取
水印提取过程如下:
-
对嵌入水印后的图像进行SVD分解,得到奇异值矩阵ΣΣ。
-
从ΣΣ矩阵中提取水印信息。
-
将提取出的水印信息转换为二值形式,并进行长度缩减。
3. 相关系数NC
相关系数NC(Normalized Correlation)是一种常用的水印质量评价指标,用来衡量提取出的水印与原始水印之间的相似度。其计算公式如下:
��=∑�=1�(��−�ˉ)(��′−�′ˉ)∑�=1�(��−�ˉ)2∑�=1�(��′−�′ˉ)2
4. 实验结果
实验结果表明,基于SVD的数字水印嵌入方法具有较好的隐蔽性和鲁棒性。在一定程度的攻击下,提取出的水印仍然能够保持较高的相关系数NC,说明该方法能够有效抵抗常见的图像攻击。
5. 结论
本文提出了一种基于SVD的数字水印嵌入和提取方法,并利用相关系数NC作为水印质量评估指标。该方法具有较好的隐蔽性和鲁棒性,能够在一定程度上抵抗常见的图像攻击。未来,可以进一步研究更有效的SVD水印嵌入算法,以及针对不同类型攻击的鲁棒性提升策略。
⛳️ 运行结果
🔗 参考文献
[1] 夏菽兰,王吉林,赵力.基于SVD分解的小波数字水印算法的研究[J].微电子学与计算机, 2010(6):4.DOI:CNKI:SUN:WXYJ.0.2010-06-034.
[2] 杜康华,任文越,王崇.一种基于奇异值分解的数字水印的嵌入和提取方法及系统.2018[2024-06-12].
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类