✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
电池充电状态(SOC)是电动汽车、储能系统等领域的关键参数,准确估计SOC对于电池管理系统(BMS)的安全运行和性能优化至关重要。传统方法如库仑计法受电流积分误差影响较大,而基于模型的方法则需要精确的电池模型。本文提出一种结合扩展卡尔曼滤波器(EKF)和前馈深度神经网络(FNN)的SOC估计方法,利用EKF的实时滤波能力和FNN的非线性逼近能力,实现对电池SOC的准确估计。
1. 引言
随着电动汽车、储能系统等应用的快速发展,对电池性能的准确评估和管理需求日益增长。电池充电状态(SOC)作为衡量电池剩余容量的关键参数,其准确估计对于电池管理系统(BMS)的安全运行和性能优化具有重要意义。
传统的SOC估计方法主要包括库仑计法和基于模型的方法。库仑计法通过积分电池电流来估计SOC,但受限于电流积分误差累积,精度较低。基于模型的方法通过建立电池模型来估计SOC,需要精确的电池模型参数,且计算量大,实时性差。
近年来,深度学习技术在电池SOC估计领域展现出巨大潜力。深度神经网络(DNN)能够学习复杂的非线性关系,并利用大量数据进行训练,实现对电池SOC的准确预测。然而,DNN模型通常需要大量的训练数据,且缺乏实时性。
为了克服现有方法的局限性,本文提出一种结合扩展卡尔曼滤波器(EKF)和前馈深度神经网络(FNN)的SOC估计方法。EKF是一种非线性滤波器,能够利用系统模型和测量数据对状态变量进行实时估计。FNN是一种具有较强非线性逼近能力的深度神经网络,能够学习电池的复杂非线性特性。
本文首先建立了电池的简化模型,并基于该模型推导出EKF算法。然后,利用实验数据训练FNN模型,以提高EKF的估计精度。最后,通过仿真实验验证了该方法的有效性和优势。
2. 扩展卡尔曼滤波器
EKF是一种非线性滤波器,能够利用系统模型和测量数据对状态变量进行实时估计。EKF算法的核心思想是将非线性系统线性化,并将卡尔曼滤波器应用于线性化后的系统。
2.1 电池模型
本文采用以下简化模型来描述电池的动力学特性:
2.2 EKF算法
EKF算法可用于对电池SOC进行实时估计。其主要步骤如下:
-
初始化状态向量和协方差矩阵。
-
预测步骤:利用电池模型预测下一个时刻的状态向量和协方差矩阵。
-
更新步骤:利用测量数据更新状态向量和协方差矩阵。
3. 前馈深度神经网络
FNN是一种具有较强非线性逼近能力的深度神经网络,能够学习电池的复杂非线性特性。本文利用FNN模型对EKF的估计结果进行修正,以提高估计精度。
3.1 网络结构
FNN的网络结构包括输入层、隐藏层和输出层。输入层接收EKF的估计结果,隐藏层对输入信息进行非线性变换,输出层输出修正后的SOC估计值。
3.2 训练数据
FNN的训练数据包括EKF的估计结果和真实的SOC值。这些数据可以通过实验获得。
4. 仿真实验
为了验证本文方法的有效性,本文进行了仿真实验。仿真实验采用MATLAB软件进行,并使用开源数据集作为训练和测试数据。
4.1 数据集
本文使用的数据集包括电池的电压、电流、温度和SOC等信息。数据来源为公开的电池实验数据,包括[数据来源]。
4.2 实验结果
仿真实验结果表明,本文方法能够有效地估计电池SOC,并优于传统的库仑计法和基于模型的方法。
5. 结论
本文提出了一种结合EKF和FNN的电池SOC估计方法,利用EKF的实时滤波能力和FNN的非线性逼近能力,实现了对电池SOC的准确估计。仿真实验结果验证了该方法的有效性和优势。该方法能够有效地提高电池管理系统的精度和可靠性,为电动汽车、储能系统等应用提供技术支持。
⛳️ 运行结果
🔗 参考文献
[1] 商云龙.车用锂离子动力电池状态估计与均衡管理系统优化设计与实现[D].山东大学,2017.
[2] 商云龙,张承慧,崔纳新,等.基于模糊神经网络优化扩展卡尔曼滤波的锂离子电池荷电状态估计[J].控制理论与应用, 2016, 33(2):9.DOI:10.7641/CTA.2016.41167.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类