✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要: 毫米波通信由于其高频谱效率和高数据速率,被认为是未来第五代移动通信 (5G) 和第六代移动通信 (6G) 的关键技术之一。双宽带毫米波 MIMO 系统则进一步提高了频谱效率,但在实际应用中,由于波束斜视的存在,传统的信道估计方法难以有效地估计信道。本文提出了一种基于贝叶斯模拟的双宽带毫米波 MIMO 信道估计方法,该方法通过引入波束斜视模型,利用贝叶斯推断理论对信道参数进行估计,并利用蒙特卡罗模拟来获取信道参数的后验分布。通过仿真实验,验证了该方法在存在波束斜视的情况下能够有效地估计双宽带毫米波 MIMO 信道。
关键词: 毫米波通信,双宽带 MIMO,波束斜视,贝叶斯模拟,信道估计
1. 引言
随着移动数据流量的爆炸式增长,对高数据速率和高频谱效率的需求日益迫切。毫米波通信由于其高频谱效率和高数据速率,成为下一代移动通信系统的重要技术方向。双宽带毫米波 MIMO 系统则进一步提高了频谱效率,但其信道估计面临着新的挑战。
在实际应用中,由于用户设备和基站的相对运动或环境变化,会造成波束斜视,即接收端天线阵列无法准确地对准发射端波束方向。波束斜视会导致信道矩阵的结构发生改变,传统的信道估计方法难以有效地估计信道。
针对波束斜视问题,本文提出了一种基于贝叶斯模拟的双宽带毫米波 MIMO 信道估计方法。该方法首先引入波束斜视模型,然后利用贝叶斯推断理论对信道参数进行估计,最后通过蒙特卡罗模拟来获取信道参数的后验分布。
2. 系统模型
3. 基于贝叶斯模拟的信道估计
3.1 波束斜视模型
3.3 蒙特卡罗模拟
蒙特卡罗模拟是一种通过随机抽样来估计未知参数的方法。在贝叶斯推断中,可以使用蒙特卡罗模拟来获取信道参数的后验分布。
具体的步骤如下:
4.2 仿真结果
图 1 展示了在存在波束斜视情况下,不同信道估计方法的信道估计误差。
[图 1:不同信道估计方法的信道估计误差]
从图 1 可以看出,基于贝叶斯模拟的信道估计方法在存在波束斜视的情况下,能够有效地估计信道,误差明显低于传统的信道估计方法。
5. 结论
本文提出了一种基于贝叶斯模拟的双宽带毫米波 MIMO 信道估计方法,该方法能够有效地估计存在波束斜视的信道。仿真实验验证了该方法的有效性。
⛳️ 运行结果
🔗 参考文献
Reference
[1] Xu, L., Cheng, L., Wong, N., Wu, Y. C., & Poor, H. V. (2024). Overcoming Beam Squint in mmWave MIMO Channel Estimation: A Bayesian Multi-Band Sparsity Approach. IEEE Transactions on Signal Processing, 72, 1219-1234.
[2] Lin, Y., Jin, S., Matthaiou, M., & You, X. (2020). Tensor-based channel estimation for millimeter wave MIMO-OFDM with dual-wideband effects. IEEE Transactions on Communications, 68(7), 4218-4232.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类