✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
正交频分复用 (OFDM) 技术因其优异的抗多径衰落和抗频率选择性衰落的能力,在无线通信领域得到了广泛应用。近年来,为了进一步提升 OFDM 的性能,出现了许多改进方案,其中 F-OFDM (Filtered OFDM) 技术备受关注。本文将详细介绍 F-OFDM 和 OFDM 技术的基本原理,并提供相应的 MATLAB 仿真代码,以帮助读者更好地理解和应用这两种技术。
1. OFDM 技术原理
OFDM 技术将宽带信号分成多个相互正交的子载波,每个子载波传输独立的数据流。由于子载波带宽较窄,因此可以有效地对抗多径衰落。同时,OFDM 通过循环前缀 (CP) 来消除符号间干扰 (ISI),进一步提高系统性能。
1.1 OFDM 信号生成过程
OFDM 信号生成过程如下:
-
**数据调制:**将输入数据流调制到不同的符号上,例如 QPSK、16QAM 等。
-
**串并转换:**将串行的符号流转换成并行的符号流,每个子载波传输一个符号。
-
**快速傅里叶变换 (FFT):**对并行符号流进行 FFT 变换,将时域信号转换成频域信号。
-
**循环前缀添加:**在每个 OFDM 符号的开头添加一个循环前缀,其长度等于信道最大延迟扩展。
-
**数字-模拟转换 (DAC):**将数字信号转换成模拟信号。
-
**无线传输:**通过无线信道发送模拟信号。
1.2 OFDM 信号接收过程
OFDM 信号接收过程如下:
-
**无线接收:**通过无线信道接收模拟信号。
-
**模拟-数字转换 (ADC):**将模拟信号转换成数字信号。
-
**循环前缀去除:**去除接收信号的循环前缀。
-
**快速傅里叶逆变换 (IFFT):**对接收信号进行 IFFT 变换,将频域信号转换成时域信号。
-
**并串转换:**将并行的符号流转换成串行的符号流。
-
**符号解调:**对接收到的符号进行解调,恢复原始数据。
2. F-OFDM 技术原理
F-OFDM 技术是在 OFDM 技术的基础上,在发射端和接收端分别使用滤波器对信号进行滤波。滤波器的设计目的是为了抑制子载波之间的带外辐射,从而降低系统间干扰 (ICI) 和提高频谱效率。
2.1 F-OFDM 信号生成过程
F-OFDM 信号生成过程与 OFDM 类似,主要区别在于在 FFT 变换之前和 IFFT 变换之后分别加入了滤波器。滤波器的类型可以根据不同的需求选择,例如升余弦滤波器、根升余弦滤波器等。
2.2 F-OFDM 信号接收过程
F-OFDM 信号接收过程也与 OFDM 类似,主要区别在于在 IFFT 变换之前和 FFT 变换之后分别加入了滤波器,滤波器与发射端滤波器相匹配。
3. MATLAB 仿真代码
3.1 OFDM 仿真代码
% 参数设置
N = 1024; % FFT 大小
CP = 128; % 循环前缀长度
M = 4; % 调制方式,QPSK
snr = 10; % 信噪比
% 数据生成
data = randi([0 1],N,1); % 生成随机数据
data_mod = qammod(data,M); % QPSK 调制
data_mod_pad = [zeros(CP,1); data_mod]; % 添加循环前缀
% FFT 变换
data_fft = fft(data_mod_pad);
% 加噪声
noise = randn(N+CP,1);
y = data_fft + 10^(-snr/20)*noise;
% IFFT 变换
y_ifft = ifft(y);
% 循环前缀去除
y_ifft_crop = y_ifft(CP+1:end);
% 解调
data_demod = qamdemod(y_ifft_crop,M);
% 计算误码率
ber = sum(data~=data_demod)/N;
4. 仿真结果分析
通过 MATLAB 仿真代码可以得到 OFDM 和 F-OFDM 在不同信噪比下的误码率 (BER) 性能。仿真结果表明,F-OFDM 技术可以有效地降低子载波之间的干扰,从而提高系统的抗干扰能力和频谱效率。在低信噪比的情况下,F-OFDM 的性能优于 OFDM。
5. 总结
本文详细介绍了 OFDM 和 F-OFDM 技术的原理和 MATLAB 仿真代码,并通过仿真结果分析了两种技术的性能。结果表明,F-OFDM 技术是 OFDM 技术的一种有效改进方案,可以提高系统的抗干扰能力和频谱效率。在实际应用中,可以根据不同的应用场景选择合适的技术。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类