✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
可重构智能表面(Reconfigurable Intelligent Surface, RIS)作为一种新兴的无线通信技术,凭借其低功耗、低成本和易于部署等优势,在提升无线系统性能方面展现出巨大的潜力。然而,现有的RIS信道模型大多忽略了偏振效应和开关损耗的影响,这限制了对RIS系统性能的准确评估和优化。本文旨在提出一种考虑偏振和开关损耗的新型RIS信道模型,并通过数据分析方法探讨其对系统性能的影响。
传统的RIS信道模型通常将RIS视为理想的反射单元阵列,忽略了实际RIS单元的偏振特性和开关损耗。然而,在实际应用中,RIS单元的偏振特性会影响信号的反射系数和相位偏移,而开关损耗则会降低信号功率,从而影响系统的整体性能。因此,忽略这些因素会导致模型与实际情况存在偏差,从而影响系统设计和优化。
本研究提出的新型RIS信道模型将偏振和开关损耗纳入考虑范围。具体而言,我们采用穆勒矩阵来描述RIS单元的偏振特性,该矩阵能够完整地描述入射波和反射波的偏振态之间的转换关系。不同于以往模型仅考虑标量反射系数,我们使用穆勒矩阵来刻画每个RIS单元对不同偏振态信号的反射特性。这种方法能够更精确地描述偏振对RIS信道的影响。
此外,我们还考虑了RIS单元的开关损耗。实际RIS单元在开启和关闭状态之间切换时,会产生一定的能量损耗。我们使用一个概率模型来描述每个RIS单元的开关状态,该模型考虑了单元的开关概率和相应的功率损耗。通过引入开关状态变量,我们能够更准确地模拟RIS单元的实际工作状态,并对开关损耗对信道的影响进行量化分析。
为了验证该模型的有效性,我们进行了大量的仿真实验。我们考虑了不同数量的RIS单元、不同单元间距、不同开关概率和不同偏振状态下的信道特性。通过与现有模型进行比较,我们发现,该模型能够更准确地预测RIS系统的信道容量、误码率等关键性能指标。特别是在高频段和多径环境下,该模型的优势更加明显。
数据分析结果显示,偏振效应和开关损耗对RIS信道特性有着显著的影响。当忽略偏振效应时,模型会高估系统性能;而忽略开关损耗时,模型会低估系统性能。具体而言,偏振效应会造成信道衰落加剧,降低信道容量;开关损耗则会降低接收信号功率,从而增加误码率。此外,我们还发现,RIS单元数量、单元间距和开关概率等因素会影响偏振和开关损耗对系统性能的影响程度。
基于以上数据分析结果,我们可以得出以下结论:
-
考虑偏振和开关损耗的新型RIS信道模型能够更准确地描述实际RIS系统的信道特性,为系统设计和优化提供更可靠的依据。
-
偏振效应和开关损耗对RIS系统性能有着显著的影响,忽略这些因素会导致模型精度下降,从而影响系统性能评估和优化。
-
需要根据实际应用场景选择合适的RIS单元配置和开关策略,以最大限度地降低偏振和开关损耗带来的负面影响。
未来研究方向包括:
-
进一步完善RIS信道模型,考虑更复杂的因素,例如单元间耦合、硬件非理想性等。
-
开发基于该模型的RIS系统优化算法,例如波束赋形算法、资源分配算法等。
-
开展实验验证,进一步验证该模型的准确性和实用性。
📣 部分代码
mbda = speed/freq; % wavelength(unit: Hz)
k = (2*pi)/lambda; % Wave number
a = AntData.ris.area_a;
b = AntData.ris.area_b;
vec_Tx2RIS = ris_position - tx_position;
len_Tx2RIS = sqrt( sum( vec_Tx2RIS.^2 ,1 ) );
vec_RIS2Rx = rx_position - ris_position;
len_RIS2Rx = sqrt( sum( vec
⛳️ 运行结果
🔗 参考文献
De-Ming Chian, Chao-Kai Wen, Chi-Hung Wu, Fu-Kang Wang, and Kai-Kit Wong, “A novel channel model for reconfigurable intelligent surfaces with consideration of polarization and switch impairments,” arXiv preprint arXiv:2304.03713, 2023. [Online]. Available: https://arxiv.org/abs/2304.03713.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇