有监督学习神经网络的回归拟合——基于红外光谱的汽油辛烷值预测附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

摘要: 汽油辛烷值是衡量汽油抗爆性能的重要指标,快速、准确的辛烷值预测对于炼油过程优化和质量控制至关重要。传统的辛烷值测定方法耗时且成本高昂,而近红外光谱 (NIR) 技术凭借其快速、无损、在线监测的优势,成为辛烷值预测的理想工具。本文探讨了基于红外光谱的有监督学习神经网络回归拟合在汽油辛烷值预测中的应用。重点阐述了数据采集与预处理、神经网络模型的构建与训练、以及模型性能评估的关键步骤,并分析了影响模型预测精度的因素,展望了该技术未来的发展方向。

关键词: 汽油辛烷值;近红外光谱;有监督学习;神经网络;回归拟合;预测模型

1. 引言

汽油是现代社会最重要的燃料之一,广泛应用于交通运输、工业生产等领域。汽油辛烷值 (RON/MON) 是衡量汽油抗爆性能的关键指标,直接关系到发动机的工作效率和使用寿命。辛烷值过低的汽油容易引起爆震,损害发动机部件。因此,精确控制汽油辛烷值,使其满足质量标准,是炼油行业的重要目标。

传统的辛烷值测定方法,如标准马达法和研究法,需要进行复杂的物理测试,耗时且成本高昂。这对于快速变化的炼油过程控制和产品质量监控带来了挑战。近红外光谱 (NIR) 技术利用分子振动在近红外区域产生的光谱信息,可以反映物质的化学组成和物理性质。NIR 技术具有快速、无损、在线监测的优势,已经广泛应用于食品、医药、化工等领域。将 NIR 技术与化学计量学方法相结合,可以建立快速、准确的汽油辛烷值预测模型,实现对汽油辛烷值的在线监测和控制。

近年来,随着人工智能技术的发展,神经网络模型在回归预测领域展现出强大的能力。神经网络能够学习复杂非线性关系,适用于处理高维度、非线性、具有噪声的光谱数据。因此,基于红外光谱的有监督学习神经网络回归拟合,成为汽油辛烷值预测领域的研究热点。

2. 红外光谱与辛烷值的关系

汽油的主要成分是不同碳链长度的烷烃、烯烃、芳香烃等有机化合物。这些化合物在近红外光谱区域存在特征吸收峰,这些吸收峰的强度和位置与化合物的浓度和结构有关。辛烷值与汽油中不同烃类成分的比例密切相关,因此,汽油的近红外光谱信息可以反映其辛烷值的高低。

具体来说,可以通过以下几个方面理解红外光谱与辛烷值的关系:

  • 特定官能团的吸收峰: 某些官能团,例如甲基 (CH3)、亚甲基 (CH2) 等,在近红外区域具有特定的吸收峰。汽油中不同烃类成分的官能团含量不同,因此光谱中这些吸收峰的强度与辛烷值相关。

  • 氢键的作用: 分子间的氢键作用也会影响近红外光谱的特征。汽油中不同烃类成分的极性不同,氢键作用的强度也不同,进而影响光谱的形状和强度。

  • 光谱的整体信息: 汽油的近红外光谱是多种成分光谱的叠加,包含了丰富的化学信息。通过化学计量学方法,可以从光谱的整体信息中提取与辛烷值相关的特征。

3. 基于神经网络的辛烷值预测模型

基于红外光谱的有监督学习神经网络回归拟合辛烷值预测模型,通常包括以下几个关键步骤:

3.1 数据采集与预处理

  • 光谱数据采集: 使用近红外光谱仪采集不同辛烷值的汽油样品的光谱数据。需要保证样品的多样性和代表性,涵盖不同炼油工艺和不同辛烷值范围的汽油样品。光谱分辨率、扫描次数等参数需要根据具体情况进行优化,以获得高质量的光谱数据。

  • 数据预处理: 红外光谱数据通常包含各种噪声,例如散射效应、基线漂移、仪器噪声等。这些噪声会影响模型的预测精度。因此,需要对光谱数据进行预处理,常用的预处理方法包括:

    • 平滑处理: 例如 Savitzky-Golay 平滑,可以减少光谱中的高频噪声。

    • 基线校正: 例如多项式拟合、导数法,可以消除光谱的基线漂移。

    • 散射校正: 例如多元散射校正 (MSC)、标准正态变量变换 (SNV),可以消除散射效应的影响。

    • 光谱归一化: 例如最大值归一化、标准差归一化,可以将光谱数据缩放到相同的范围,消除浓度差异的影响。

  • 数据分割: 将预处理后的光谱数据分为训练集、验证集和测试集。训练集用于训练神经网络模型,验证集用于调整模型的超参数,测试集用于评估模型的泛化能力。通常采用随机分割或交叉验证的方法进行数据分割。

3.2 神经网络模型的构建与训练

  • 模型选择: 常用的神经网络模型包括:

    • 多层感知器 (MLP): MLP 是一种基本的前馈神经网络,包含输入层、隐藏层和输出层。每个神经元通过激活函数进行非线性变换。

    • 卷积神经网络 (CNN): CNN 擅长处理具有局部相关性的数据,例如图像和光谱数据。通过卷积核提取光谱中的特征。

    • 循环神经网络 (RNN): RNN 擅长处理序列数据,例如时间序列数据。可以用于提取光谱中的时序特征。

  • 模型架构设计: 根据光谱数据的特点和预测任务的要求,设计神经网络模型的架构。例如,确定隐藏层的层数、每层神经元的数量、激活函数的类型等。

  • 模型训练: 使用训练集数据训练神经网络模型。常用的优化算法包括梯度下降法、Adam 算法等。损失函数通常选择均方误差 (MSE) 或平均绝对误差 (MAE)。

  • 超参数调整: 使用验证集数据调整神经网络模型的超参数,例如学习率、batch size、正则化系数等。常用的超参数调整方法包括网格搜索、随机搜索、贝叶斯优化等。

  • 防止过拟合: 为了防止模型在训练集上表现良好,但在测试集上表现较差,需要采取防止过拟合的措施,例如:

    • 增加训练数据: 更多的数据可以帮助模型学习更通用的特征。

    • 正则化: 例如 L1 正则化、L2 正则化,可以限制模型的复杂度。

    • Dropout: 在训练过程中随机丢弃一些神经元,可以防止模型过于依赖某些特征。

    • 早停法: 在验证集上的性能开始下降时停止训练。

3.3 模型性能评估

  • 评估指标: 常用的模型性能评估指标包括:

    • 均方误差 (MSE): 衡量预测值与真实值的平方差的平均值。

    • 平均绝对误差 (MAE): 衡量预测值与真实值的绝对差的平均值。

    • 决定系数 (R²): 衡量模型解释数据方差的能力。

    • 均方根误差 (RMSE): MSE 的平方根,与真实值的量纲相同。

    • 偏差 (Bias): 衡量预测值与真实值的平均差异。

    • 标准差 (Standard Deviation): 衡量预测值的离散程度。

  • 模型验证: 使用测试集数据评估模型的泛化能力。需要保证测试集数据与训练集数据相互独立。

  • 模型诊断: 分析模型的预测误差,找出误差较大的样本,分析其原因,并对模型进行改进。

4. 影响模型预测精度的因素

影响基于红外光谱的神经网络辛烷值预测模型精度的因素有很多,主要包括:

  • 光谱仪器的性能: 光谱仪器的分辨率、信噪比、波长范围等参数直接影响光谱数据的质量。

  • 样品的多样性: 训练数据的多样性直接影响模型的泛化能力。需要保证训练数据涵盖不同炼油工艺和不同辛烷值范围的汽油样品。

  • 数据预处理方法的选择: 不同的数据预处理方法对光谱数据的影响不同。需要选择合适的数据预处理方法,以消除噪声,提高光谱数据的质量。

  • 神经网络模型的选择和设计: 不同的神经网络模型适用于不同的数据类型。需要选择合适的神经网络模型,并设计合理的模型架构。

  • 超参数的调整: 超参数的选择直接影响模型的性能。需要使用合适的超参数调整方法,找到最优的超参数组合。

  • 模型的过拟合: 过拟合会导致模型在训练集上表现良好,但在测试集上表现较差。需要采取防止过拟合的措施,例如增加训练数据、正则化、Dropout、早停法等。

5. 未来发展方向

基于红外光谱的有监督学习神经网络回归拟合在汽油辛烷值预测领域具有广阔的应用前景。未来的发展方向主要包括:

  • 开发更先进的神经网络模型: 例如,可以尝试使用深度学习模型,如卷积神经网络 (CNN)、循环神经网络 (RNN) 等,来提取光谱中的更深层次的特征。也可以尝试使用混合模型,例如将 CNN 和 RNN 结合起来,充分利用光谱中的局部和时序信息。

  • 利用迁移学习: 迁移学习可以将从其他相关任务中学习到的知识迁移到辛烷值预测任务中,从而提高模型的性能。例如,可以利用从其他燃料性质预测任务中学习到的知识,来提高辛烷值预测模型的性能。

  • 结合其他光谱技术: 可以将近红外光谱与其他光谱技术,例如拉曼光谱、紫外可见光谱等,结合起来,利用多种光谱信息,提高模型的预测精度。

  • 实现在线监测和控制: 将预测模型集成到炼油过程控制系统中,实现对汽油辛烷值的在线监测和控制,提高炼油过程的稳定性和效率。

  • 研究光谱解释性: 尝试解释神经网络模型是如何从光谱中提取与辛烷值相关的特征的,提高模型的透明性和可信度。

6. 结论

基于红外光谱的有监督学习神经网络回归拟合是汽油辛烷值预测的一种有效方法。通过对红外光谱数据进行预处理,并使用合适的神经网络模型进行训练,可以建立快速、准确的辛烷值预测模型。该技术具有快速、无损、在线监测的优势,可以应用于炼油过程优化和质量控制。未来的研究方向包括开发更先进的神经网络模型、利用迁移学习、结合其他光谱技术、实现在线监测和控制、研究光谱解释性等。随着人工智能技术的不断发展,基于红外光谱的神经网络辛烷值预测技术将会发挥越来越重要的作用。

⛳️ 运行结果

🔗 参考文献

[1] 王书涛,万金丛,刘诗瑜,等.基于注意力机制残差神经网络的近红外芒果种类定性建模方法[J].光谱学与光谱分析, 2024, 44(8):2262-2267.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值