✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
能源结构的转型是全球应对气候变化的关键策略,而可再生能源的蓬勃发展为实现这一目标提供了坚实基础。然而,风能和太阳能等间歇性可再生能源的大规模接入给电力系统的稳定性和可靠性带来了新的挑战。为解决这一问题,构建包含风、光、水、火、储等多种能源形式的多能互补系统,并通过协调优化调度,充分发挥各种能源的优势,成为了当前电力系统研究的热点和发展趋势。尤其值得关注的是,传统调度方式往往将可再生能源视为被动接受的负荷,而未来电力系统需要转变思路,将可再生能源的出力特性纳入调度模型,激发其“调峰主动性”,从而更好地应对电力需求的变化,提升系统整体运行效率和安全性。本文将深入探讨计及调峰主动性的风光水火储多能系统互补协调优化调度策略,分析其理论基础、关键技术和应用前景。
一、多能互补系统的优势与挑战
多能互补系统整合了不同能源形式的优势,可以有效克服单一能源形式的局限性。例如,风能和太阳能具有清洁环保的优点,但其出力受天气条件影响较大,具有间歇性和波动性。水力发电具有快速响应和灵活调度的能力,可以用于填补风光发电的缺口。火电作为传统的稳定电源,可以提供可靠的基荷支撑。储能系统则可以平抑可再生能源的波动性,提高系统的调节能力。
通过将这些不同特性的能源形式进行互补协调,多能互补系统可以实现以下优势:
- 提高可再生能源消纳能力:
多能互补系统可以通过不同能源形式的互补调节,平抑可再生能源的波动性,提高其消纳能力,降低弃风弃光率。
- 提高系统运行的稳定性和可靠性:
多种能源形式的协同运作可以增强系统的抗扰动能力,降低系统故障风险,提高供电可靠性。
- 降低运行成本:
通过优化调度,可以充分利用低成本的可再生能源,降低化石燃料的消耗,从而降低系统运行成本。
- 降低碳排放:
大规模应用可再生能源可以显著降低碳排放,有助于实现能源转型的目标。
然而,多能互补系统也面临着诸多挑战:
- 模型复杂性:
多种能源形式的耦合使得系统模型更加复杂,需要考虑不同能源形式之间的物理特性和运行约束。
- 调度难度:
需要综合考虑不同能源形式的出力特性、运行成本和约束条件,进行全局优化调度,难度较高。
- 预测精度要求:
精确的风光出力预测对于优化调度至关重要,但风光出力预测本身具有很高的不确定性。
- 协调控制复杂性:
需要建立高效的协调控制机制,保证不同能源形式之间的协同运作。
二、调峰主动性的内涵与重要性
传统的电力系统调度模式主要将可再生能源视为被动接受的负荷,即根据预测的风光出力调整其他电源的出力。这种模式未能充分发挥可再生能源的潜力,导致其消纳能力受限。
“调峰主动性”是指可再生能源根据电力系统的需求,主动调整自身的出力,参与电力系统的调峰、调频等辅助服务,从而提高系统的整体运行效率和稳定性。具体而言,可以通过以下方式实现可再生能源的调峰主动性:
- 利用可再生能源的固有特性进行调峰:
例如,水力发电可以快速响应电力需求的变化,储能系统可以平抑可再生能源的波动性,从而实现调峰。
- 通过功率预测和优化控制,主动调整可再生能源的出力:
例如,可以通过控制风机的叶片角度或调整光伏逆变器的运行参数,主动降低可再生能源的出力,从而参与调峰。
- 利用需求侧响应,引导用户调整用电行为,从而减轻电力系统的调峰压力:
例如,可以通过价格信号引导用户在用电高峰期减少用电,或者通过控制可调节负荷,实现需求侧的调峰。
计及调峰主动性的调度策略可以显著提高可再生能源的消纳能力,降低系统运行成本,提高系统运行的稳定性和可靠性。
三、计及调峰主动性的多能互补系统互补协调优化调度模型
建立计及调峰主动性的多能互补系统互补协调优化调度模型是实现系统高效运行的关键。该模型需要综合考虑以下因素:
- 不同能源形式的数学模型:
需要建立风力发电机、光伏电池、水轮发电机、火电机组和储能系统的精确数学模型,描述其出力特性、运行约束和成本函数。
- 电力系统的约束条件:
需要考虑电力系统的功率平衡约束、电压约束、潮流约束和安全约束等。
- 可再生能源的出力预测模型:
需要建立精确的风光出力预测模型,为优化调度提供可靠的输入数据。
- 调峰主动性的控制策略:
需要将可再生能源的调峰主动性纳入调度模型,例如,可以通过约束风力发电机的出力范围,实现其调峰能力。
- 优化算法:
需要选择合适的优化算法,例如,线性规划、混合整数线性规划、非线性规划或遗传算法等,求解优化调度模型。
常用的优化目标包括:
- 最小化系统运行成本:
包括燃料成本、启停成本和维护成本等。
- 最小化碳排放:
包括化石燃料的燃烧排放和设备的制造排放等。
- 最大化可再生能源消纳率:
尽量多地利用可再生能源,减少弃风弃光。
- 提高系统运行的稳定性:
尽量减少系统电压波动和频率波动。
四、关键技术与实现方法
实现计及调峰主动性的多能互补系统互补协调优化调度需要以下关键技术:
- 高精度风光出力预测技术:
高精度的风光出力预测是优化调度的基础。可以利用历史数据、气象数据和机器学习算法,提高风光出力预测的精度。
- 智能电网技术:
智能电网技术可以提供实时监测、数据分析和控制决策支持,为优化调度提供保障。
- 储能技术:
储能系统可以平抑可再生能源的波动性,提高系统的调节能力,是实现调峰主动性的关键技术。
- 需求侧响应技术:
需求侧响应可以引导用户调整用电行为,减轻电力系统的调峰压力。
- 先进优化算法:
需要选择高效的优化算法,例如,分布式优化算法、模型预测控制算法或强化学习算法,求解复杂的多能互补系统优化调度模型。
- 信息通信技术:
需要建立可靠的信息通信网络,实现不同能源形式之间的信息共享和协同控制。
五、应用前景与挑战
计及调峰主动性的多能互补系统互补协调优化调度技术具有广阔的应用前景:
- 提高可再生能源消纳能力:
该技术可以显著提高可再生能源的消纳能力,降低弃风弃光率,促进能源转型。
- 降低系统运行成本:
通过优化调度,可以充分利用低成本的可再生能源,降低化石燃料的消耗,从而降低系统运行成本。
- 提高系统运行的稳定性和可靠性:
多种能源形式的协同运作可以增强系统的抗扰动能力,降低系统故障风险,提高供电可靠性。
- 促进能源互联网的发展:
该技术是能源互联网的重要组成部分,可以促进能源系统的智能化、信息化和互联互通。
然而,该技术也面临着一些挑战:
- 技术成熟度:
一些关键技术,例如高精度风光出力预测技术和储能技术,还需要进一步发展和完善。
- 标准和规范:
需要制定统一的标准和规范,规范多能互补系统的设计、运行和维护。
- 政策支持:
需要政府提供政策支持,鼓励多能互补系统的建设和运行。
- 商业模式:
需要探索新的商业模式,吸引社会资本参与多能互补系统的建设和运营。
六、结论
计及调峰主动性的风光水火储多能系统互补协调优化调度是解决可再生能源大规模接入带来的挑战的关键策略。通过充分发挥各种能源的优势,实现多种能源形式的协同运作,可以显著提高可再生能源的消纳能力,降低系统运行成本,提高系统运行的稳定性和可靠性。未来,随着技术的不断发展和政策的不断完善,该技术将在能源转型中发挥越来越重要的作用,为构建清洁、低碳、安全、高效的现代能源体系做出贡献。然而,我们也需要清醒地认识到,该技术的发展和应用仍然面临着诸多挑战,需要学术界、产业界和政府共同努力,攻克技术难题,完善标准规范,探索商业模式,才能最终实现多能互补系统的广泛应用,推动能源革命的深入发展
⛳️ 运行结果
🔗 参考文献
[1] 李铁,李正文,杨俊友,等.计及调峰主动性的风光水火储多能系统互补协调优化调度[J].电网技术, 2020, 44(10):9.DOI:10.13335/j.1000-3673.pst.2020.0626.
[2] 姚刚,马覃峰,安甦,等.计及调峰主动性的风光水火储系统互补协调优化调度方法.CN202211407305.5[2025-03-10].
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇