✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要: 物流配送作为现代经济的重要组成部分,其效率直接影响着企业的运营成本和服务质量。传统的物流配送方式往往依赖于单一车辆,效率低下且成本高昂。近年来,无人机技术的发展为物流配送带来了新的机遇。本文探讨了基于遗传算法(GA)的多车辆和无人机联合多目标地点物流配送路径规划问题,旨在最小化配送总时间。文章详细描述了问题的数学模型、遗传算法的设计与实现,并对实验结果进行了分析,验证了该方法的有效性。
关键词: 物流配送,路径规划,遗传算法,多车辆,无人机,最短时间
1. 引言
随着电子商务的蓬勃发展,物流配送的需求日益增长。如何高效、快速、经济地将货物送达目的地,成为物流企业面临的重要挑战。传统的物流配送主要依赖于地面车辆,受到交通拥堵、道路限制等因素的影响,难以满足日益增长的配送需求。无人机(UAV)作为一种新型的运输工具,具有灵活性高、速度快、可跨越地形障碍等优势,为解决传统物流配送的瓶颈提供了新的解决方案。
将无人机应用于物流配送,可以有效提高配送效率,降低配送成本。然而,无人机的续航能力有限,且受到空域管制等因素的制约,单独使用无人机进行大规模的物流配送并不现实。因此,将无人机与传统车辆相结合,形成多车辆和无人机联合的配送模式,能够充分发挥两者的优势,提高配送效率和灵活性。
本文针对多车辆和无人机联合的多目标地点物流配送问题,以最小化配送总时间为目标,提出一种基于遗传算法(GA)的路径规划方法。该方法考虑了车辆的载重能力、无人机的续航能力、配送点的需求量以及交通状况等多种因素,旨在寻找最优的配送路径,从而提高物流配送的效率。
2. 问题描述与数学模型
本文研究的多车辆无人机联合多目标地点物流配送问题可以描述如下:
- 问题背景:
存在多个配送中心,每个配送中心拥有若干辆地面车辆和若干架无人机。存在多个需要进行配送的客户地点,每个客户地点有不同的需求量。
- 目标:
在满足所有客户地点需求的前提下,合理安排车辆和无人机的配送路径,使得总配送时间最短。
- 约束条件:
-
每辆车辆和每架无人机的载重能力有限制。
-
每架无人机的续航能力有限制。
-
每个客户地点的需求必须得到满足。
-
车辆和无人机的行驶速度不同。
-
车辆需要在道路上行驶,无人机可以直线飞行。
-
需要考虑交通拥堵情况对车辆行驶时间的影响。
-
无人机可以从配送中心直接出发,也可以从车辆上发射。
-
无人机送达货物后必须返回原车辆或配送中心。
-
⛳️ 运行结果
🔗 参考文献
[1] 王亚磊.基于遗传算法的物流配送网络设计与车辆路径优化研究[D].西安建筑科技大学,2020.
[2] 管理科学与工程.多目标农村电商联合配送车辆路径优化研究[D].郑州大学,2021.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇