✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要:随着分布式发电(DG)在配电网中的渗透率日益提高,其对配电网的运行控制带来了诸多挑战,特别是无功功率的优化问题。传统的配电网无功优化模型通常以降低网损作为单一目标,难以兼顾电压稳定、设备寿命等其他关键性能指标。本文以IEEE 33节点配电网为例,建立一个基于多目标优化的含DG配电网无功优化模型。该模型综合考虑了网损最小化、电压偏差最小化以及DG出力利用率最大化三个目标,并采用改进的差分进化算法(DE)进行求解。通过对模型的详细描述和算法的优化策略阐述,验证了所提模型和算法在提高配电网运行性能方面的有效性。
关键词:分布式发电(DG);无功优化;多目标优化;差分进化算法;配电网;IEEE 33节点
1. 引言
配电网是电力系统的重要组成部分,负责将高压电能分配给用户。随着经济的发展和能源结构的转型,分布式发电(DG)接入配电网的比例不断提高。DG的接入在改善供电可靠性、减少碳排放等方面具有显著优势,但也给配电网的运行控制带来了新的挑战。其中,无功功率优化问题尤为突出。
传统的配电网无功优化主要依靠调节传统无功补偿设备,如并联电容器和有载调压变压器(OLTC)。然而,DG的随机性和间歇性接入使得配电网的潮流分布更加复杂,传统的无功优化方法难以适应这种变化。一方面,DG的无功出力具有不确定性,可能导致电压波动和越限;另一方面,DG自身也需要进行合理的无功功率控制,以提高其利用率和降低接入配电网的影响。
传统的配电网无功优化模型通常以降低网损作为单一目标,虽然简单易于实现,但忽略了电压稳定、设备寿命等其他关键性能指标。在DG大量接入的背景下,单一目标的优化策略难以满足配电网的复杂运行需求。因此,需要建立一个能够兼顾多个目标的无功优化模型,并采用合适的优化算法进行求解。
本文以IEEE 33节点配电网为例,建立一个基于多目标优化的含DG配电网无功优化模型。该模型综合考虑了网损最小化、电压偏差最小化以及DG出力利用率最大化三个目标。为了求解该模型,本文采用改进的差分进化算法(DE),并对其进行了针对性的优化设计。通过对模型的详细描述和算法的优化策略阐述,验证了所提模型和算法在提高配电网运行性能方面的有效性。
2. 含DG配电网多目标无功优化模型
本模型旨在优化配电网中DG的无功出力、可调电容器的投切以及有载调压变压器的分接头位置,以实现多个优化目标,提高配电网的运行性能。
2.1 目标函数
本模型考虑以下三个目标函数:
-
2.1.1 网损最小化 (F1)
网损是配电网运行的重要经济指标,降低网损能够提高电能利用效率,减少能源浪费。网损可以表示为:
F1 = ∑i=1NB 3Ri * |Ii|2
其中,NB是支路总数,Ri是第i条支路的电阻,Ii是第i条支路的电流。
-
2.1.2 电压偏差最小化 (F2)
电压偏差直接影响配电网的供电质量,过高的电压偏差会导致设备损坏,影响用户用电体验。电压偏差可以表示为:
F2 = ∑i=1NN |Vi - Vref|
其中,NN是节点总数,Vi是第i个节点的电压幅值,Vref是参考电压(通常为1pu)。
-
2.1.3 DG出力利用率最大化 (F3)
提高DG出力利用率能够充分发挥DG的经济效益和环境效益,减少化石能源的消耗。DG出力利用率可以表示为:
F3 = ∑i=1NDG PDGi / Pcap_DGi
其中,NDG是DG总数,PDGi是第i个DG的有功出力,Pcap_DGi是第i个DG的有功容量。 需要注意的是,由于是要最大化DG出力利用率,因此在多目标优化中,需要将其转化为最小化问题,即取其相反数。
2.2 约束条件
为了保证配电网的安全稳定运行,模型必须满足以下约束条件:
-
2.2.1 功率平衡约束:
Pi(V, θ) - PGDi + PLi = 0
Qi(V, θ) - QGDi + QLi = 0
其中,Pi 和 Qi 分别是节点 i 的有功和无功功率注入;PGDi 和 QGDi 分别是节点 i 的 DG 有功和无功出力;PLi 和 QLi 分别是节点 i 的有功和无功负荷;V 和 θ 分别是节点电压幅值和相角。
-
2.2.2 电压约束:
Vmin ≤ Vi ≤ Vmax
其中,Vmin 和 Vmax 分别是节点电压的上下限。
-
2.2.3 DG无功出力约束:
QDGmin ≤ QGDi ≤ QDGmax
其中,QDGmin 和 QDGmax 分别是DG无功出力的上下限。
-
2.2.4 可调电容器投切约束:
QCmin ≤ QCi ≤ QCmax
其中,QCi是可调电容器的容量,QCmin 和 QCmax 分别是可调电容器投切容量的上下限。
-
2.2.5 OLTC分接头位置约束:
Tmin ≤ Ti ≤ Tmax
其中,Ti是OLTC的分接头位置,Tmin 和 Tmax 分别是OLTC分接头位置的上下限。
3. 基于改进差分进化算法的多目标优化求解
为了求解上述多目标优化模型,本文采用改进的差分进化算法(DE)。DE算法是一种基于群体智能的优化算法,具有原理简单、易于实现、鲁棒性强等优点。然而,传统的DE算法在求解多目标优化问题时,容易陷入局部最优,且收敛速度较慢。因此,本文对DE算法进行了以下改进:
-
3.1 外部存档策略:
为了保留DE算法在搜索过程中发现的Pareto最优解,引入外部存档策略。每次迭代后,将新生成的个体与存档中的个体进行比较,如果新个体支配存档中的个体,则将存档中的个体替换为新个体;如果新个体被存档中的个体支配,则舍弃该新个体;如果新个体与存档中的个体互不支配,则将新个体加入存档中。为了控制存档的大小,采用拥挤距离机制对存档中的个体进行筛选,保留分布均匀的Pareto最优解。
-
3.2 自适应变异策略:
传统的DE算法采用固定的变异策略,难以适应不同的优化问题。为了提高算法的适应性,本文采用自适应变异策略。根据个体在目标空间中的位置,动态调整变异算子的参数,例如变异因子(F)和交叉概率(CR)。在目标空间中分布较稀疏的个体,采用较大的变异因子和交叉概率,以增加其探索能力;在目标空间中分布较密集的个体,采用较小的变异因子和交叉概率,以提高其开发能力。
-
3.3 多样性维护机制:
为了防止算法早熟收敛,引入多样性维护机制。定期检测种群的多样性水平,如果多样性水平低于设定的阈值,则对种群进行扰动,例如随机初始化部分个体,或者对个体进行交叉变异操作,以增加种群的多样性。
3.4 算法流程
改进的差分进化算法流程如下:
- 初始化种群:
随机生成初始种群,每个个体代表一个控制变量的集合,例如DG的无功出力、可调电容器的投切量和OLTC的分接头位置。
- 计算目标函数值:
计算种群中每个个体的目标函数值,即网损、电压偏差和DG出力利用率。
- 更新外部存档:
将种群中的非支配解更新到外部存档中,并采用拥挤距离机制控制存档的大小。
- 变异操作:
根据自适应变异策略,对种群中的每个个体进行变异操作,生成变异个体。
- 交叉操作:
将变异个体与父代个体进行交叉操作,生成试验个体。
- 选择操作:
比较试验个体和父代个体的目标函数值,选择较好的个体进入下一代种群。
- 多样性维护:
定期检测种群的多样性水平,如果多样性水平低于设定的阈值,则对种群进行扰动。
- 终止条件:
如果满足终止条件(例如达到最大迭代次数),则停止算法,输出外部存档中的Pareto最优解。
⛳️ 运行结果
🔗 参考文献
[1] 段建东,杨杉.基于改进差分进化法的含双馈型风电场的配电网无功优化[J].电力自动化设备, 2013.DOI:CNKI:SUN:DLZS.0.2013-11-023.
[2] 程杉,陈民铀,黄薏宸.含分布式发电的配电网多目标无功优化策略研究[J].电力系统保护与控制, 2013, 41(10):6.DOI:CNKI:SUN:JDQW.0.2013-10-011.
[3] 雷敏,杨万里,彭晓波,等.基于改进简化粒子群算法的含DG的配电网无功优化[J].华北电力大学学报:自然科学版, 2015, 42(1):6.DOI:10.3969/j.ISSN.1007-2691.2015.01.07.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇