✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
时间序列预测作为数据分析领域的重要分支,其在经济预测、金融分析、气象预警、交通流量预测等众多实际应用中扮演着不可或缺的角色。随着数据复杂性和波动性的日益增长,传统的单一模型预测方法往往难以捕捉时间序列内在的复杂模式和非线性特征,预测精度面临严峻挑战。因此,如何提升复杂多元时间序列的预测性能,一直是学术界和工业界共同关注的热点问题。本文将深入探讨一种高创新的多元时间序列预测方法:CEEMDAN-VMD-LSTM-Attention双重分解+长短期记忆神经网络+注意力机制多元时间序列预测模型。该模型巧妙地结合了信号分解技术与深度学习网络的优势,旨在有效解决复杂时间序列的预测难题。
引言
多元时间序列预测的复杂性主要体现在以下几个方面:首先,不同时间序列之间可能存在复杂的相互依赖关系和交叉影响,这些关联性往往是非线性的,难以通过简单的线性模型捕捉。其次,时间序列自身通常具有显著的非平稳性和多尺度特征,即包含不同频率的波动成分,例如长期趋势、季节性变化、周期性波动以及随机噪声。传统的预测方法,如自回归积分滑动平均模型(ARIMA)、指数平滑法等,通常假定时间序列是平稳的,并且难以有效处理非线性关系和复杂的多尺度波动。
近年来,随着机器学习和深度学习技术的飞速发展,长短期记忆神经网络(LSTM)因其独特的门控结构,在处理具有长程依赖性的序列数据方面展现出卓越的能力,被广泛应用于时间序列预测领域。然而,直接将LSTM应用于原始的非平稳、包含复杂多尺度特征的多元时间序列,其性能仍受到限制。原因在于LSTM虽然擅长捕捉序列依赖,但对于处理高频噪声和不同频率的叠加,其学习效率和准确性可能会受到影响。此外,对于多元时间序列,如何有效整合不同序列的信息并识别其对预测结果的关键影响,也是一个挑战。
为了克服这些挑战,研究人员开始探索将信号分解技术与深度学习模型相结合的方法。信号分解技术旨在将复杂的时间序列分解为若干相对简单的分量,从而降低序列的复杂性,为后续的预测模型提供更“干净”和易于学习的数据。经验模态分解(EMD)及其改进算法(如EEMD、CEEMDAN)和变分模态分解(VMD)是当前常用的两种非线性、非平稳信号分解方法,它们能够将原始序列分解为一组具有不同频率特征的本征模态函数(IMF)或模态分量(Mode)。
本文提出的CEEMDAN-VMD-LSTM-Attention双重分解+长短期记忆神经网络+注意力机制多元时间序列预测模型,创造性地结合了CEEMDAN和VMD这两种分解技术,形成双重分解的策略,并在LSTM网络中引入注意力机制,以进一步提升模型的预测性能和解释性。其核心思想在于,首先通过CEEMDAN对原始多元时间序列进行初步分解,捕捉不同尺度的波动;然后对每个CEEMDAN分解得到的IMF分量进行VMD二次分解,以更精细地提取各频率成分;接着,利用LSTM网络分别对每个最终分解得到的模态分量进行预测;最后,引入注意力机制对所有模态分量的预测结果进行加权融合,得到最终的多元时间序列预测结果。
模型架构与原理
本模型的架构可以概括为以下几个主要步骤:
-
CEEMDAN初步分解:
集合经验模态分解(CEEMDAN)是经验模态分解(EMD)的一种改进算法,旨在解决EMD中模态混叠问题。CEEMDAN通过在原始信号中加入有限个高斯白噪声实现集合平均,从而更有效地将信号分解为一系列具有物理意义的本征模态函数(IMF)和一个残差项。对于每个需要预测的多元时间序列,首先应用CEEMDAN进行分解,得到多个IMF分量和一个残差分量。每个IMF代表了原始序列在特定频率范围内的波动特征,而残差项则反映了序列的长期趋势。 -
VMD二次分解:
变分模态分解(VMD)是一种自适应、非递归的信号处理方法,其目标是将信号分解为一系列具有紧致支撑的本征模态函数(Modes)。与EMD系列算法不同,VMD是基于变分问题的框架,通过迭代优化求解一组带宽有限的AM-FM信号(即模态函数),这些信号的中心频率和带宽是自适应确定的。在本模型中,对CEEMDAN分解得到的每一个IMF分量,进一步应用VMD进行二次分解。这一步骤的目的是对IMF中的复杂频率成分进行更精细的划分,进一步降低每个分量的复杂性,使其更易于后续的LSTM模型学习。 -
基于LSTM的模态分量预测:
经过CEEMDAN和VMD双重分解后,原始的多元时间序列被转化为一组更平稳、更易于处理的模态分量。对于每个分解得到的模态分量,构建一个独立的LSTM网络进行预测。LSTM网络具有遗忘门、输入门和输出门,能够有效地学习和记忆序列中的长期依赖关系,从而对每个模态分量未来的走势进行预测。针对多元时间序列的特点,可以为每个序列的每个模态分量建立一个单独的LSTM预测模型,或者构建共享权重的LSTM模型来捕捉不同序列相似模态分量之间的共性。 -
基于注意力机制的预测结果融合:
将每个模态分量通过LSTM网络得到的预测结果进行融合是关键的一步。简单的加权平均或线性叠加可能无法有效捕捉不同模态分量对最终预测结果的贡献差异。因此,引入注意力机制(Attention Mechanism)进行预测结果的加权融合。注意力机制允许模型动态地评估每个模态分量预测结果的重要性,并根据其重要性赋予不同的权重。具体而言,可以构建一个注意力网络,输入为所有模态分量的LSTM预测结果,输出为每个预测结果的权重,这些权重经过softmax归一化后用于对各模态预测结果进行加权求和,得到最终的多元时间序列预测值。注意力机制的引入不仅能够提高预测精度,还能提供一定的可解释性,揭示哪些模态分量对最终预测结果的影响更大。
模型优势与创新性
本文提出的CEEMDAN-VMD-LSTM-Attention模型具有显著的优势和创新性:
- 双重分解策略:
首次将CEEMDAN和VMD两种信号分解技术进行串联应用,形成双重分解策略。CEEMDAN能够有效分离不同尺度的波动,而VMD则能进一步细化每个IMF内部的频率成分。这种结合能够更全面、更精细地捕捉时间序列的复杂多尺度特征,为后续的预测模型提供高质量的输入。
- LSTM网络对模态分量进行预测:
利用LSTM网络对分解得到的模态分量进行预测,充分发挥了LSTM在处理序列数据和捕捉长期依赖方面的优势。对相对简单的模态分量进行预测,降低了预测难度,提高了预测精度。
- 注意力机制加权融合:
引入注意力机制对不同模态分量的预测结果进行动态加权融合。这克服了简单加权方法的不足,能够根据每个模态分量对最终预测结果的贡献度动态调整权重,提高了模型的预测准确性和鲁棒性。同时,注意力权重也能提供一定的可解释性,帮助理解不同频率成分对预测结果的影响。
- 适用于多元时间序列:
该模型架构可以自然地扩展到多元时间序列预测。可以为每个序列的每个模态分量构建预测模型,或者设计共享权重的模型来捕捉序列间的相互关系。注意力机制也能够有效整合不同序列、不同模态的预测信息。
实验与结果分析(此部分为虚拟,实际应用需进行具体实验)
为了验证CEEMDAN-VMD-LSTM-Attention模型的有效性,可以在多种真实世界的多元时间序列数据集上进行实验,例如股票市场数据、交通流量数据、气象数据等。将本模型与传统的预测方法(如ARIMA)、单一分解方法(如仅使用CEEMDAN或VMD)结合LSTM、以及仅使用LSTM的模型进行对比。常用的评价指标包括均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)等。
预期的实验结果表明,CEEMDAN-VMD-LSTM-Attention模型在各项评价指标上均优于对比模型。双重分解策略能够更有效地降低序列的复杂性,使得LSTM模型更容易学习其内在规律。注意力机制则能够更准确地融合不同模态分量的预测信息,进一步提升预测精度。特别是在处理具有显著非平稳性、多尺度特征和序列间复杂关联的多元时间序列时,本模型的优势尤为突出。
进一步的分析可以考察不同分解层次和模态数量对模型性能的影响,以及注意力权重分布对预测结果的贡献。例如,可以通过可视化注意力权重来了解哪些模态分量在特定预测时刻更重要,从而为模型的解释性提供支持。
结论与展望
本文提出的CEEMDAN-VMD-LSTM-Attention双重分解+长短期记忆神经网络+注意力机制多元时间序列预测模型,为解决复杂多元时间序列预测问题提供了一种高创新的解决方案。通过巧妙地结合CEEMDAN和VMD的双重分解,有效降低了时间序列的复杂性和非平稳性;利用LSTM网络对分解后的模态分量进行预测,充分发挥了其在序列学习方面的优势;引入注意力机制对预测结果进行动态加权融合,进一步提高了模型的预测精度和可解释性。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇