基于Copula理论的多风电场风电预测误差时空相关性建模研究附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

研究背景与意义

  • 风电作为一种重要的可再生能源,其大规模接入电力系统给电力系统的运行和调度带来了诸多挑战。准确的风电预测对于电力系统的安全稳定运行和经济调度至关重要。然而,由于风的随机性和不确定性,风电预测存在一定的误差。多个风电场的风电预测误差在时间和空间上往往存在一定的相关性,对这种相关性进行建模研究,有助于更准确地评估风电预测误差的影响,提高电力系统的可靠性和经济性。

Copula 理论基础

  • Copula 函数是一种将多个随机变量的联合分布函数与它们的边缘分布函数联系起来的函数。它能够描述随机变量之间的相关性结构,而不依赖于它们的具体分布形式。通过 Copula 函数,可以将多个风电场风电预测误差的边缘分布函数组合成联合分布函数,从而对其时空相关性进行建模。

  • 常见的 Copula 函数有高斯 Copula、t - Copula、Clayton Copula、Gumbel Copula 等。不同的 Copula 函数适用于不同类型的相关性结构,例如高斯 Copula 适用于线性相关结构,t - Copula 适用于具有厚尾特性的相关结构,Clayton Copula 和 Gumbel Copula 适用于描述不同程度的下尾相关和上尾相关。

建模步骤

  1. 数据收集与预处理

    :收集多个风电场的风电功率预测数据和实际功率数据,计算预测误差。对数据进行预处理,包括数据清洗、缺失值处理、异常值处理等,确保数据的质量和可靠性。

  2. 边缘分布建模

    :分别对每个风电场的风电预测误差进行边缘分布建模。可以采用参数估计方法,如极大似然估计、矩估计等,估计边缘分布的参数。常用的边缘分布有正态分布、 Weibull 分布、Gamma 分布等。根据数据的特点选择合适的边缘分布模型。

  3. Copula 函数选择与参数估计

    :根据风电场风电预测误差的相关性特点,选择合适的 Copula 函数。然后采用参数估计方法,如极大似然估计、贝叶斯估计等,估计 Copula 函数的参数。可以通过比较不同 Copula 函数的拟合优度指标,如 AIC(赤池信息准则)、BIC(贝叶斯信息准则)等,选择最优的 Copula 函数。

  4. 时空相关性建模

    :将选择的 Copula 函数与边缘分布函数相结合,构建多风电场风电预测误差的联合分布函数,从而实现对其时空相关性的建模。可以通过分析 Copula 函数的参数和联合分布函数的性质,研究风电场之间风电预测误差的时空相关性特征。

  5. 模型验证与评估

    :采用交叉验证、留一法等方法对建立的模型进行验证和评估。可以通过计算模型的预测误差、均方根误差、平均绝对误差等指标,评估模型的准确性和可靠性。同时,可以与其他传统的相关性建模方法进行比较,验证基于 Copula 理论的建模方法的优越性。

⛳️ 运行结果

🔗 参考文献

[1] 高广利.基于GRACE数据降尺度的青藏高原地下水储变量时空演化及归因研究[D].华北水利水电大学,2023.

[2] 彭故甍,电气工程.考虑风电场时空相关性的储能系统多目标优化配置研究[D].[2025-05-08].

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值