✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
1. 引言
随着分布式发电技术的快速发展,分布式电源(DG)在配电网中的应用越来越广泛。合理地选择分布式电源的安装位置和容量对于提高配电网的运行效率、降低网损、改善电压质量等方面具有重要意义。IEEE33 节点系统是一个典型的配电网测试系统,常被用于研究分布式电源的相关问题。粒子群优化算法(PSO)是一种基于群体智能的优化算法,具有收敛速度快、易于实现等优点,适用于解决分布式电源选址与定容的多目标优化问题。
2. 多目标优化模型
- 目标函数
- 降低网损
:网损是配电网运行中的重要指标,降低网损可以提高电能的传输效率。通过计算分布式电源接入前后配电网的潮流分布,得到网损的表达式,将其作为一个目标函数,以最小化网损为目标。
- 改善电压质量
:维持配电网各节点电压在合理范围内是保证电能质量的重要要求。可以定义电压偏差的相关指标,如各节点电压与额定电压的偏差平方和等,作为另一个目标函数,以最小化电压偏差为目标。
- 降低网损
- 约束条件
- 功率平衡约束
:在每个节点处,注入的有功功率和无功功率应满足功率平衡方程,即节点注入功率等于节点负荷功率与线路传输功率之和。
- 电压约束
:各节点电压应在规定的上下限范围内,一般为额定电压的一定百分比。
- 线路容量约束
:线路传输的有功功率和无功功率不能超过线路的最大允许容量,以避免线路过载。
- 分布式电源容量约束
:每个可选安装位置的分布式电源容量有一定的限制,不能超过该位置所能承受的最大容量,同时也不能小于最小安装容量。
- 功率平衡约束
3. 粒子群优化算法原理
-
粒子群优化算法模拟鸟群或鱼群等生物群体的觅食行为。在算法中,每个粒子代表问题的一个潜在解,粒子在搜索空间中通过不断调整自己的位置和速度来寻找最优解。
-
粒子的速度更新公式为:
4. 基于粒子群优化算法的分布式电源选址与定容实现步骤
- 初始化种群
:随机生成一定数量的粒子,每个粒子的位置代表分布式电源的一种选址与定容方案。粒子的位置可以用一个向量表示,向量的每个元素对应一个节点,元素的值表示该节点是否安装分布式电源以及安装的容量大小。
- 计算适应度值
:根据建立的多目标优化模型,计算每个粒子的适应度值。对于多目标优化问题,可以采用加权法、Pareto 支配等方法将多个目标函数转化为一个综合的适应度值。
- 更新个体最优和全局最优
:将每个粒子的当前适应度值与其历史最优适应度值进行比较,更新个体最优位置。同时,在整个种群中找到适应度值最优的粒子,更新全局最优位置。
- 更新粒子速度和位置
:根据粒子群优化算法的速度和位置更新公式,更新每个粒子的速度和位置。
- 判断终止条件
:判断是否满足终止条件,如达到最大迭代次数、全局最优解的变化小于一定阈值等。如果满足终止条件,则输出最优解;否则,返回步骤 “计算适应度值”,继续迭代。
5. 结果分析与讨论
-
通过粒子群优化算法得到分布式电源的最优选址与定容方案后,对结果进行分析。比较优化前后配电网的网损、电压质量等指标的变化,评估分布式电源接入对配电网运行的影响。
-
分析不同目标函数权重对优化结果的影响。通过调整网损和电压质量等目标函数的权重,观察分布式电源选址与定容方案的变化,以及对配电网各项指标的影响,从而确定合理的权重取值范围。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇