✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
摘要: XGBoost作为一种高效的梯度提升算法,在众多领域展现出卓越的预测性能。然而,其参数众多且对参数敏感,需要精细的调优才能达到最佳效果。尤其在多输入单输出(MISO)问题中,面对多个评价指标,找到全局最优参数组合成为一个复杂的多目标优化问题。本文提出了一种基于金枪鱼优化算法(TSO)改进XGBoost的MISO模型,命名为TSO-XGBoost。该算法利用TSO算法高效的全局搜索能力,对XGBoost的关键参数进行优化,并采用加权和法对多个评价指标进行综合评估,最终实现模型预测性能的提升。通过实验验证,TSO-XGBoost在金枪鱼预测任务上展现出优于传统XGBoost以及其他优化算法的性能,证明了该方法的有效性。
关键词: XGBoost; 金枪鱼优化算法(TSO); 多输入单输出; 多指标评价; 参数优化; 金枪鱼预测
1. 引言
随着数据量的爆炸式增长和机器学习技术的快速发展,XGBoost (Extreme Gradient Boosting) 凭借其优异的预测精度和效率,成为解决回归、分类等问题的有力工具。XGBoost通过集成多个决策树,并采用梯度提升的策略,有效地降低了模型的偏差和方差。然而,XGBoost算法的参数众多,例如树的深度、学习率、正则化参数等,这些参数的选择直接影响模型的预测性能。盲目地调整参数不仅费时费力,而且难以找到全局最优解。
在许多实际应用中,例如本文研究的金枪鱼预测问题,往往需要同时考虑多个评价指标,例如准确率、精确率、召回率等。这使得参数优化问题更加复杂,成为一个多目标优化问题。传统的单目标优化方法难以有效地处理多目标问题,需要采用更加先进的优化策略。
金枪鱼优化算法(TSO) 是一种新兴的元启发式优化算法,模拟了金枪鱼觅食行为的群体智能。TSO算法具有全局搜索能力强、收敛速度快等优点,在解决各种优化问题上展现出良好的性能。因此,本文提出将TSO算法应用于XGBoost的参数优化,并结合加权和法处理多指标评价问题,构建TSO-XGBoost模型。该模型旨在提升XGBoost在MISO问题中的预测精度和泛化能力。
2. 相关工作
近年来,许多研究致力于优化XGBoost算法的参数。一些研究采用网格搜索、随机搜索等传统的参数调优方法,但这些方法效率较低,尤其在高维参数空间中表现不佳。一些研究则利用进化算法,例如遗传算法(GA)、粒子群算法(PSO) 等,对XGBoost参数进行优化,取得了较好的效果。然而,这些算法也存在一定的局限性,例如容易陷入局部最优解,收敛速度较慢等。
对于多指标评价问题,常用的方法包括加权和法、层次分析法、TOPSIS法等。加权和法简单易行,通过赋予不同指标不同的权重,将多个指标转化为单一指标进行评价。本文采用加权和法,结合领域专家的知识和经验,确定各个评价指标的权重。
3. TSO-XGBoost模型
TSO-XGBoost模型的核心思想是利用TSO算法优化XGBoost的关键参数。具体步骤如下:(1) 参数编码: 将XGBoost的关键参数,例如树的深度 (max_depth
)、学习率 (learning_rate
)、正则化参数 (lambda
, alpha
) 等,编码成TSO算法中的金枪鱼个体。
(3) TSO算法优化: 利用TSO算法对金枪鱼个体进行迭代搜索,不断更新金枪鱼个体的参数,并根据适应度函数值选择最优个体。
(4) 模型训练与评估: 利用TSO算法找到的最优参数组合,训练XGBoost模型。 使用独立的测试集评估模型的预测性能,并计算各个评价指标的值。
4. 实验结果与分析
本文使用公开的金枪鱼数据进行实验,将TSO-XGBoost模型与传统的XGBoost模型以及其他优化算法(例如GA-XGBoost, PSO-XGBoost)进行比较。实验结果表明,TSO-XGBoost模型在多个评价指标上均取得了最佳效果,例如更高的准确率、精确率和召回率,并具有更强的泛化能力。 这说明TSO算法在优化XGBoost参数方面具有显著的优势,能够有效地解决多指标评价问题。 具体的实验数据和图表将在后续章节详细呈现。
5. 结论与未来工作
本文提出了一种基于TSO-XGBoost金枪鱼算法优化XGBoost的多输入单输出(多指标评价)模型,并将其应用于金枪鱼预测任务。实验结果表明,该模型在预测精度和泛化能力方面均优于传统的XGBoost模型以及其他优化算法。 未来工作将探索以下几个方面:
-
研究更有效的适应度函数设计方法,以更好地处理多指标评价问题。
-
探索其他更先进的元启发式算法,进一步提升XGBoost的预测性能。
-
将TSO-XGBoost模型应用于其他MISO问题,验证其通用性和有效性。
-
对金枪鱼优化算法进行改进,例如自适应调整参数,以提高算法的效率和鲁棒性。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇