一区正弦余弦算法!SCA-SVM正弦余弦算法优化支持向量机多特征分类预测Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

在当今信息爆炸的时代,高维数据和复杂的分类问题日益普遍。有效的特征选择和精确的分类模型对于数据分析和预测至关重要。支持向量机(Support Vector Machine, SVM)作为一种强大的机器学习算法,在分类问题中表现出色,尤其擅长处理高维数据和非线性问题。然而,SVM的性能在很大程度上取决于其参数的选取,特别是惩罚因子C和核函数的参数。传统的手动调参方法效率低下且容易陷入局部最优解。为了解决这一问题,元启发式算法被广泛应用于SVM的参数优化。本文将探讨一种改进的元启发式算法,即一区正弦余弦算法(Single Zone Sine Cosine Algorithm, SCA),并将其应用于优化SVM,以提高多特征分类预测的精度和效率。

1. 支持向量机(SVM)概述

SVM是一种基于结构风险最小化原则的监督学习算法。其核心思想是在特征空间中寻找一个最优的超平面,能够最大程度地将不同类别的数据样本分开,同时保持最大的间隔。SVM通过引入核函数,可以将非线性问题转化为高维空间中的线性问题,从而有效地处理复杂的分类任务。常用的核函数包括线性核、多项式核和径向基核函数(RBF)。

SVM的优势在于其强大的泛化能力和对高维数据的适应性。然而,SVM的性能很大程度上取决于参数的选取。惩罚因子C控制着模型对错误分类样本的容忍程度,较大的C会导致模型更加关注训练数据的准确性,容易过拟合;较小的C则可能导致模型欠拟合。核函数的参数,如RBF核的γ值,也对模型的性能产生重要影响。因此,如何有效地选择SVM的参数是提升其性能的关键。

2. 正弦余弦算法(SCA)原理及局限性

正弦余弦算法(Sine Cosine Algorithm, SCA)是一种新兴的元启发式优化算法,由Seyedali Mirjalili于2016年提出。该算法基于正弦和余弦函数的周期性振荡特性,通过不断搜索解空间中的最优解。SCA的主要思想是利用正弦和余弦函数来控制搜索个体在解空间中的移动,从而实现全局搜索和局部搜索的平衡。

SCA的更新公式如下:

  • 位置更新公式:

    其中:

    • X<sub>i</sub><sup>t</sup>表示第i个个体在第t次迭代中的位置。

    • P<sub>i</sub><sup>t</sup>表示当前最优解的位置。

    • r<sub>1</sub>, r<sub>2</sub>, r<sub>3</sub>, r<sub>4</sub>是随机参数。

    • r<sub>1</sub>控制搜索范围,通常随迭代次数线性递减。

    • r<sub>2</sub>在[0, 2π]范围内随机取值,决定搜索方向。

    • r<sub>3</sub>控制当前最优解对搜索个体的影响程度。

    • r<sub>4</sub>在[0, 1]范围内随机取值,决定使用正弦函数还是余弦函数。

    • X<sub>i</sub><sup>t+1</sup> = X<sub>i</sub><sup>t</sup> + r<sub>1</sub> * sin(r<sub>2</sub>) * |r<sub>3</sub> * P<sub>i</sub><sup>t</sup> - X<sub>i</sub><sup>t</sup>| (if r<sub>4</sub> < 0.5)

    • X<sub>i</sub><sup>t+1</sup> = X<sub>i</sub><sup>t</sup> + r<sub>1</sub> * cos(r<sub>2</sub>) * |r<sub>3</sub> * P<sub>i</sub><sup>t</sup> - X<sub>i</sub><sup>t</sup>| (if r<sub>4</sub> ≥ 0.5)

SCA具有结构简单、参数少、易于实现的优点,在解决一些优化问题上表现出良好的性能。然而,SCA也存在一些局限性,例如:

  • 易陷入局部最优解: SCA的搜索机制主要依赖于正弦和余弦函数的周期性振荡,缺乏有效的跳出局部最优解的机制。

  • 收敛速度较慢: 在搜索初期,SCA的全局搜索能力较强,但在搜索后期,由于搜索范围的缩小,收敛速度可能会变慢。

3. 一区正弦余弦算法(Single Zone SCA)改进策略

为了克服传统SCA的局限性,提升其优化性能,本文提出一种改进的一区正弦余弦算法(Single Zone SCA)。该算法主要从以下几个方面进行改进:

  • 单区搜索策略: 传统的SCA使用多个搜索个体在解空间中独立搜索。为了更好地利用搜索信息,提高搜索效率,Single Zone SCA采用单区搜索策略。所有搜索个体都围绕当前最优解进行搜索,从而集中搜索力量,提高搜索精度。

  • 自适应调整参数r<sub>1</sub>: 传统的SCA中,参数r<sub>1</sub>通常随迭代次数线性递减。这种线性递减方式可能无法适应复杂优化问题的搜索过程。为了更好地控制搜索范围,Single Zone SCA采用自适应调整参数r<sub>1</sub>的策略。例如,可以使用如下公式:

    其中:

    该公式使得r<sub>1</sub>在搜索初期递减较慢,有利于全局搜索;在搜索后期递减较快,有利于局部搜索。

    • r<sub>1_max</sub>是r<sub>1</sub>的最大值。

    • t是当前迭代次数。

    • T是最大迭代次数。

    • r<sub>1</sub> = r<sub>1_max</sub> * (1 - (t/T)<sup>2</sup>)

  • 引入扰动机制: 为了防止算法陷入局部最优解,Single Zone SCA引入扰动机制。在每次迭代过程中,以一定的概率对当前最优解进行扰动。例如,可以使用如下公式:

    其中:

    引入扰动机制可以有效地帮助算法跳出局部最优解,提高搜索全局最优解的能力。

    • randn是服从标准正态分布的随机数。

    • σ是扰动幅度,可以根据问题的特性进行调整。

    • P<sub>i</sub><sup>t+1</sup> = P<sub>i</sub><sup>t</sup> + randn * σ

4. 基于Single Zone SCA优化的SVM(SCA-SVM)

将改进的Single Zone SCA应用于SVM的参数优化,可以有效地提高SVM的分类精度和效率。SCA-SVM的流程如下:

  1. 数据预处理: 对原始数据进行清洗、归一化等预处理操作,提高模型的性能。

  2. 初始化参数: 初始化SCA的参数,包括种群大小、最大迭代次数、参数r<sub>1_max</sub>、扰动幅度σ等。同时,定义SVM参数C和核函数参数的搜索范围。

  3. 评估函数: 定义评估函数,用于评价每个搜索个体的性能。通常使用交叉验证的分类准确率作为评估函数。

  4. 迭代优化: 使用Single Zone SCA进行迭代优化。在每次迭代过程中,每个搜索个体代表一组SVM参数(C和核函数参数)。根据SCA的更新公式,更新每个搜索个体的位置,并计算其对应的评估函数值。更新当前最优解。

  5. 终止条件: 当达到最大迭代次数或满足其他终止条件时,停止迭代。

  6. 模型训练与预测: 使用最优的SVM参数训练模型,并对测试数据进行预测。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值