前言
提到精确率、召回率、F1 分数的文献原文
在机器学习和统计分类问题中,精确率(Precision)、召回率(Recall)和 F1 分数(F1 Score)是衡量模型性能的三个核心指标。这些指标帮助我们评估模型在预测结果时的准确性和可靠性。本文将详细解释这三个指标的定义、计算方法以及它们在实际应用中的意义。
精确率
精确率,也称为查准率,是指模型预测为正类(positive class)中实际为正类的比例。换句话说,它衡量的是模型预测结果的准确性。精确率的计算公式如下:
精确率 = 真正例(TP) 真正例(TP) + 假正例(FP) \text{精确率} = \frac{\text{真正例(TP)}}{\text{真正例(TP)} + \text{假正例(FP)}} 精确率=真正例(TP)+假正例(FP)真正例(TP)
其中:
- 真正例(TP) \text{真正例(TP)} 真正例(TP):模型预测为正类,且实际为正类的数量。
- 假正例(FP) \text{假正例(FP)} 假正例(FP):模型预测为正类,但实际为负类的数量。
精确率越高,意味着模型的预测结果中,正类预测的准确性越高。
召回率
召回率,也称为查全率,是指在所有实际为正类的样本中,模型成功预测为正类的比例。召回率的计算公式如下: