What is a patch in image processing?

What is a patch in image processing? 

图像被分组为块的部分称为图像中的补丁patch。

Image patch is a container of pixels in larger form. For example, let’s say you have a image of 100px by 100px. If you divide this images into 10x10 patches then you will have an image with 100 patches (that is 100px in each patch). If you have developed an algorithm that will operate on 10px by 10px, that 10px by 10px is the patch size. For example, pooling layer of CNN takes larger patches and turns them into one pixel. You may think of it as window in signal processing. In image processing patch and window is interchangeable most of the time, but patch is usually used in context when your algorithm mainly focused on the fact that bunch of pixels share similar property. For instance, patch is used in con

### Transformer Model Patch Embedding Technique and Implementation In the context of vision tasks, transformers have been adapted from natural language processing to handle image data through mechanisms like patch embeddings. The process involves dividing an input image into a sequence of smaller patches that can be processed similarly to tokens in text-based models. #### Dividing Images into Patches An image is split into multiple non-overlapping patches where each patch represents a small region of the original image. For instance, given an image size \(H \times W\) with channels C, it might be divided into N patches of dimensions \(P \times P\), resulting in a total number of patches equal to: \[N = \frac{HW}{P^2}\] This division transforms spatial information within images into sequences suitable for transformer architectures[^4]. #### Linear Projection as Embedding Layer Once patches are extracted, these flat vectors undergo linear projection using a learnable parameter matrix. This operation effectively embeds raw pixel values into higher-dimensional space while preserving local structure among pixels inside individual patches. Mathematically speaking, this transformation could be represented by multiplying flattened patches against weights followed by adding bias terms: \[E_i = X_{patch}W + b\] Where \(X_{patch}\) denotes reshaped vectorized form per patch; \(W,b\) stand respectively for weight matrices along biases applied during embedding step. ```python import torch.nn as nn class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() self.img_size = (img_size, img_size) self.patch_size = (patch_size, patch_size) num_patches = (img_size // patch_size)**2 self.projection = nn.Conv2d(in_channels=in_chans, out_channels=embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, C, H, W = x.shape assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model's expected input size {self.img_size}." # Perform convolutional projection. x = self.projection(x).flatten(2).transpose(1, 2) return x ``` The provided code snippet demonstrates how one may implement such functionality efficiently via PyTorch framework utilizing `nn.Conv2d` layer instead of manually implementing operations described earlier. Convolution here serves both purposes: extracting patches and performing their respective projections simultaneously. --related questions-- 1. How does positional encoding work alongside patch embeddings? 2. Can you explain why certain modifications aim at making Vision Transformers more lightweight compared to traditional CNNs? 3. In what ways do different strategies impact computational efficiency when optimizing Vision Transformers? 4. What role does attention mechanism play after obtaining embedded patches in Vision Transformers?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MengYa_DreamZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值