Poj3974 最长回文子串 Manacher算法

这道题用到的是manacher算法,是一种用来求回文子串的复杂度为O(n)的算法,第一次接触发现这个方法真是,,,太神奇了,在原来的字符串中间插上‘#’或者其他不会出现的字符,这样就解决了奇偶的问题。利用之前已经记录下来的最大回文半径,可以将复杂度降低。

#include<stdio.h>
#include<string.h>
char a[1000010],b[2000010];
int p[2000010];//用来存放最大回文半径
int main()
{
    int id,mx,x,i,temp,cas=1;
    while(scanf("%s",a)!=EOF)
    {
        if(strcmp(a,"END")==0) break;
        x=strlen(a);
        for(i=1;i<=2*x-1;i++)//中间插入'?'
        {
            if(i%2==1)
            b[i]=a[i/2];
            else b[i]='?';
        }
        p[0]=0;
        id=0;
       int ans=0;
        for(i=1;i<=2*x-1;i++)
        {
            mx=p[id]+id-1;//记录所能达到的最大长度
            if(mx>i)  //若i在这个长度内
            {
                if(mx-i+1>p[2*id-i]) p[i]=p[2*id-i];  //如果i到最大长度的距离大于对称点的回文半径,直接赋值
                else   //否则进行拓展判断
                {
                    p[i]=mx-i+1;
                    while( (i-p[i]>0)&&(i + p[i]<=2*x-1)&&b[ i + p[i] ]==b[ i- p[i] ])
                    {

                        p[i]++;
                    
                    }
                    id=i;


                }
            }
            else  //不在长度内
            {
                p[i]=1;
                while( (i-p[i]>0)&&(i+p[i]<=2*x-1)&& b[ i-p[i] ]==b[ i+p[i] ]) p[i]++;
                id=i;
            }
            if(b[i]=='?')
            {
                temp=p[i]/2*2;
            }
            else temp=(p[i]-1)/2*2+1;

           if(temp>ans)
           {
               ans=temp;
           }
         
        }
        printf("Case %d: %d\n",cas++,ans);

    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值